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Floating-point numbers (base β, precision p)

x = (−1)s ·m · βe−p+1
s ∈ {0, 1},
m ∈ N with 1 6 m < βp

e ∈ Z with emin 6 e 6 emax

Rounding to nearest (tiesToEven, β = 2, p = 3)

RN

1100010100

1011010101

RN

+, −, ×, ÷ and fma (fused multiply-add, computes ab + c).
Correct rounding: compute the rounding of the exact result.
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Example: Kahan’s algorithm for evaluating x = ad − bc

algorithm Kahan(a, b, c , d)
ŵ ← RN(bc);
e ← RN(ŵ − bc);

f̂ ← RN(ad − ŵ);

x̂ ← RN(f̂ + e);

a, b, c , d are floating-point numbers

x̂ is the computed result

u = 1
2β

1−p is the unit roundoff

↪→ Relative error bound [JLM13a]: |x̂−x||x| 6 2u

Asymptotic optimality of the relative error bound 2u [JLM13a]

Inputs parametrized by β and p:

a = b = βp−1 + 1

c = βp−1 + β
2 β

p−2

d = 2βp−1 + β
2 β

p−2

↪→ Symbolic floating-point numbers

Relative error on the result is:

|x̂ − x |
|x | =

2u

1 + 2u
∼ 2u as p →∞.
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Example: Kahan’s algorithm for evaluating x = ad − bc

Paper-and-pencil calculations with symbolic floating-point numbers can be
tedious: we propose to manipulate such numbers in a computer algebra system.

First step in Kahan’s algorithm:

b = βp−1 + 1

c = βp−1 + β
2 β

p−2

bc = β2p−2 + β
2 β

2p−3 + βp−1 + β
2 β

p−2

RNp(bc) = β2p−2 + β
2 β

2p−3 + 2βp−1

↪→ two sets and a rounding function:

SQ containing exact results of computations such as bc;

SFp containing the symbolic floating-point numbers in precision p;

a rounding function from SQ to SFp.
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β is an even fixed base; k is a symbolic variable.

We define

L = {ak + b : a, b ∈ Z};
E = {∑i ciβ

ei : |ci | ∈ {1, 2, . . . , β − 1}, ei ∈ L};
SQ = Frac(E): stable by +, −, × and ÷.

Z

FpQ

SZ

SFpSQ

p ∈ N>2 p ∈ L>2

Evaluating

SFp = {±m · βe : m ∈ SZ, βp−1 6 |m| < βp, e ∈ L}
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Numerical rounding

β = 2, p = 5, and α = 85.5 = (1010101.1)2. RNp(α) = ?

Unit in the last place: α = (1010101.1)2.

↪→ ulpp(α) = 22.

↪→ RNp(α) = 22 · bα/ulpp(α)e.

α/ulpp(α) = (10101.011)2.

bα/ulpp(α)e = (10101)2.

↪→ RNp(α) = (1010100)2 = 84.
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Rounding to the nearest, in precision p > 2, the expression [JLM13b]:

f (p) =
23p/2 + 5 · 2p−1

23p + 25p/2+1
, with p even.

RN2(f (2)) = 2−3, RN4(f (4)) = 2−6 + 2−9, RN24(f (24)) = 2−36 + 2−49;

RNp(f (p)) = ?

Changes of variable:

• p = 2k, with k ∈ N∗, gives

f (k) =
23k + 5 · 22k−1

26k + 25k+1
∈ SQ.

• X = 2k , so that f (k) = f̃ (2k), where

f̃ (X ) =
X 3 + 5/2X 2

X 6 + 2X 5
∈ Z(X ).
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p = 2k and f(k) = f̃(2k).

f (k) =
23k + 5 · 22k−1

26k + 25k+1
f̃ (X ) =

2X + 5

2X 4 + 4X 3

Asymptotic behavior as k →∞: Asymptotic behavior as X →∞:

f (k) ∼ 2−3k f̃ (X ) ∼ X−3

↪→ 2−3k−1 6 f (k) < 2−3k+1, ↪→ 1
2X
−3 6 f̃ (X ) < 2X−3,

exponent(f ) = −3k and ulpp(f ) = 2−5k+1 ↔ 2X−5, for all k ∈ N∗.

Rounding to the nearest integer: RNp(f ) = ulpp(f ) ·
⌊ f

ulpp(f )︸ ︷︷ ︸
g

⌉
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RNp(f) = 2−5k+1 · bge and g(k) = g̃(2k).

First step toward bge : find a symbolic integer that approximates g .

g(k) =
23k + 5 · 22k−1

2k+1 + 22
g̃(X ) =

2X 3 + 5X 2

4X + 8

Asymptotic behavior as k →∞: Laurent expansion as X →∞:

g(k) = 22k−1 + 2k−2︸ ︷︷ ︸
h(k)

+O(1) g̃(X ) =
1

2
X 2 +

1

4
X︸ ︷︷ ︸

h̃(k)

+O(1)

• h(k) ∈ Z, for all k > 2: h is a symbolic integer;

• g(k)− h(k) = O(1) as k →∞: h approximates g .
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RNp(f) = 2−5k+1 · bge and h symbolic integer approximating g .

Second step to bge : correct h if needed.

h(k) = 22k−1 + 2k−2 h̃(X ) =
1

2
X 2 +

1

4
X

Distance to g , as k →∞: Distance to g̃ , as X →∞:

|g(k)− h(k)| =
2k

2k+1 + 22

< 1/2

|g̃(X )− h̃(X )| =
X

2X + 4
< 1/2

↪→ bg(k)e = h(k), for all k > 2.
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RNp(f ) = 2−3k + 2−4k−1, for k > 2, with p = 2k .

Comparing with the earlier numerical computations:
...
RN24(f (24)) = 2−36 + 2−49, [ok]
...
RN6(f (6)) = 2−9 + 2−13, [ok]
RN4(f (4)) = 2−6 + 2−9, [ok]
RN2(f (2)) = 2−3, [ko]

↪→ Our computation matches the classical ones for all k > 2.
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We define the following functions on SQ:

sign,

↪→ comparisons and absolute value,

↪→ exponent,

↪→ ulpp.

Asymptotic behaviors, with a domain of validity (k > k0).

RNp : SQ→ SFp ↔ b·e : SQ→ SZ

but

Some elements of SQ cannot be rounded.
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In base 2 and precision p = k, consider [BPZ07]

f (k) =
2

3
(1 + 11 · 2−k)

Does f ∈ SFp ?

ulpp(f ) = 2−k ⇒ g(k) =
f

ulpp(f )
=

2

3
(2k + 11)

We have:
2k−1 6 g(k) < 2k (for k > 5).

Does g ∈ SZ ?

For k ∈ N, we have 2k + 11 ≡ (−1)k − 1 (mod 3) so that:

if k is even, then g(k) ∈ Z;

if k is odd, then g(k) /∈ Z.

g /∈ SZ⇒ f /∈ SFp; RNp(f ) = 2−k · bge; bge = ?
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g(k) = 2
3 (2k + 11)/∈ SZ and g(k) ∈ Z iff k even.

There is no symbolic integer that is the nearest to g .

Sketch of the proof (by contradiction): suppose h ∈ SZ approximates to g ,

h(2k) is also a symbolic integer that approximates g(2k);

we saw that g(2k) ∈ SZ;

↪→ h(2k) = g(2k) + n, with n ∈ Z;

↪→ h = g + n;

↪→ g = h − n ∈ SZ.

We cannot round f to a nearest symbolic floating-point number but:

f (2k) ∈ SFp for p = 2k;

RNp(f (2k + 1)) = (22k+2 + 23)/3 for p = 2k + 1.
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Conclusion and perspectives

The current library:

rigorous formalism for symbolic floating-point arithmetic;

effective implementation in Maple:
27 examples [BPZ07, JLM13a, JLM13b, Mul15] within 1.5s on this laptop;

other rounding modes are implemented.

Preprint available at https://hal.inria.fr/hal-01232159

Perspectives

extend the model to handle more operations;

automatic search for examples for which the final error is close to the bound;

transfer to a formal proof system to increase the confidence.
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