Development of a library for a symbolic floating-point arithmetic

C.-P. Jeannerod, N. Louvet, J.-M. Muller, Antoine Plet
LIP at ENS de Lyon

28th June, 2016

RAIM 2016, Banyuls-sur-mer

Outline

(1) Context and motivations
(2) A symbolic floating-point arithmetic
(3) Limitation of the model
(4) Maple worksheets

Floating-point numbers (base β, precision p)

$$
x=(-1)^{s} \cdot m \cdot \beta^{e-p+1}
$$

- $s \in\{0,1\}$,
- $m \in \mathbb{N}$ with $1 \leqslant m<\beta^{p}$
- $e \in \mathbb{Z}$ with $e_{\text {min }} \leqslant e \leqslant e_{\text {max }}$

Floating-point numbers (base β, precision p)

$$
x=(-1)^{s} \cdot m \cdot \beta^{e-p+1}
$$

- $s \in\{0,1\}$,
- $m \in \mathbb{N}$ (significand) with $\beta^{p-1} \leqslant m<\beta^{p}$
- $e \in \mathbb{Z}$ (exponent)

Floating-point numbers (base β, precision p)

$$
x=(-1)^{s} \cdot m \cdot \beta^{e-p+1}
$$

- $s \in\{0,1\}$,
- $m \in \mathbb{N}$ (significand) with $\beta^{p-1} \leqslant m<\beta^{p}$
- $e \in \mathbb{Z}$ (exponent)

Rounding to nearest (tiesToEven, $\beta=2, p=3$)

Floating-point numbers (base β, precision p)

$$
x=(-1)^{s} \cdot m \cdot \beta^{e-p+1}
$$

- $s \in\{0,1\}$,
- $m \in \mathbb{N}$ (significand) with $\beta^{p-1} \leqslant m<\beta^{p}$
- $e \in \mathbb{Z}$ (exponent)

Rounding to nearest (tiesToEven, $\beta=2, p=3$)

,,$+- \times, \div$ and fma (fused multiply-add, computes $a b+c$).
Correct rounding: compute the rounding of the exact result.

Example: Kahan's algorithm for evaluating $x=a d-b c$

algorithm $\operatorname{Kahan}(a, b, c, d)$

$$
\begin{aligned}
& \widehat{w} \leftarrow \operatorname{RN}(b c) ; \\
& e \leftarrow \operatorname{RN}(\widehat{w}-b c) ; \\
& \widehat{f} \leftarrow \operatorname{RN}(a d-\widehat{w}) ; \\
& \widehat{x} \leftarrow \operatorname{RN}(\widehat{f}+e) ;
\end{aligned}
$$

- a, b, c, d are floating-point numbers
- \hat{x} is the computed result
- $u=\frac{1}{2} \beta^{1-p}$ is the unit roundoff
\hookrightarrow Relative error bound [JLM13a]: $\frac{|\hat{x}-x|}{|x|} \leqslant 2 u$

Example: Kahan's algorithm for evaluating $x=a d-b c$

algorithm $\operatorname{Kahan}(a, b, c, d)$
$\widehat{w} \leftarrow \mathrm{RN}(b c)$;
$e \leftarrow \operatorname{RN}(\widehat{w}-b c) ;$
$\widehat{f} \leftarrow \mathrm{RN}(\operatorname{ad}-\widehat{w}) ;$ $\widehat{x} \leftarrow \mathrm{RN}(\widehat{f}+e) ;$

- a, b, c, d are floating-point numbers
- \hat{x} is the computed result
- $u=\frac{1}{2} \beta^{1-p}$ is the unit roundoff
\hookrightarrow Relative error bound [JLM13a]: $\frac{|\hat{x}-x|}{|x|} \leqslant 2 u$

Asymptotic optimality of the relative error bound $2 u$ [JLM13a]

Inputs parametrized by β and p :

$$
\begin{gathered}
a=b=\beta^{p-1}+1 \\
c=\beta^{p-1}+\frac{\beta}{2} \beta^{p-2} \\
d=2 \beta^{p-1}+\frac{\beta}{2} \beta^{p-2}
\end{gathered}
$$

Relative error on the result is:

$$
\frac{|\widehat{x}-x|}{|x|}=\frac{2 u}{1+2 u} \sim 2 u \text { as } p \rightarrow \infty .
$$

\hookrightarrow Symbolic floating-point numbers

Example: Kahan's algorithm for evaluating $x=a d-b c$

Paper-and-pencil calculations with symbolic floating-point numbers can be tedious: we propose to manipulate such numbers in a computer algebra system.

First step in Kahan's algorithm:

$$
\begin{aligned}
b & =\beta^{p-1}+1 \\
c & =\beta^{p-1}+\frac{\beta}{2} \beta^{p-2} \\
b c & =\beta^{2 p-2}+\frac{\beta}{2} \beta^{2 p-3}+\beta^{p-1}+\frac{\beta}{2} \beta^{p-2} \\
\mathrm{RN}_{p}(b c) & =\beta^{2 p-2}+\frac{\beta}{2} \beta^{2 p-3}+2 \beta^{p-1}
\end{aligned}
$$

Example: Kahan's algorithm for evaluating $x=a d-b c$

Paper-and-pencil calculations with symbolic floating-point numbers can be tedious: we propose to manipulate such numbers in a computer algebra system.

First step in Kahan's algorithm:

$$
\begin{aligned}
b & =\beta^{p-1}+1 \\
c & =\beta^{p-1}+\frac{\beta}{2} \beta^{p-2} \\
b c & =\beta^{2 p-2}+\frac{\beta}{2} \beta^{2 p-3}+\beta^{p-1}+\frac{\beta}{2} \beta^{p-2} \\
\mathrm{RN}_{p}(b c) & =\beta^{2 p-2}+\frac{\beta}{2} \beta^{2 p-3}+2 \beta^{p-1}
\end{aligned}
$$

\hookrightarrow two sets and a rounding function:

- $\mathbb{S Q}$ containing exact results of computations such as $b c$;
- $\mathbb{S E}_{p}$ containing the symbolic floating-point numbers in precision p;
- a rounding function from $\mathbb{S Q}$ to $\mathbb{S F}_{p}$.

Outline

(1) Context and motivations

(2) A symbolic floating-point arithmetic
(3) Limitation of the model

44 Maple worksheets
β is an even fixed base; k is a symbolic variable.
We define

- $\mathbb{L}=\{a k+b: a, b \in \mathbb{Z}\}$;
- $\mathbb{E}=\left\{\sum_{i} c_{i} \beta^{e_{i}}:\left|c_{i}\right| \in\{1,2, \ldots, \beta-1\}, e_{i} \in \mathbb{L}\right\}$;
- $\mathbb{S Q}=\operatorname{Frac}(\mathbb{E})$: stable by,,$+- \times$ and \div.

Numerical rounding

$$
\beta=2, p=5, \text { and } \alpha=85.5=(1010101.1)_{2} . \operatorname{RN}_{p}(\alpha)=?
$$

- Unit in the last place: $\alpha=(1010101.1)_{2}$.

$$
\begin{aligned}
& \hookrightarrow \operatorname{ulp}_{p}(\alpha)=2^{2} . \\
& \hookrightarrow \operatorname{RN}_{p}(\alpha)=2^{2} \cdot\left\lfloor\alpha / \operatorname{ulp}_{p}(\alpha)\right\rceil .
\end{aligned}
$$

- $\alpha /$ ulp $_{p}(\alpha)=(10101.011)_{2}$.
- $\left\lfloor\alpha / \mathrm{ulp}_{p}(\alpha)\right\rceil=(10101)_{2}$.
$\hookrightarrow \mathrm{RN}_{p}(\alpha)=(1010100)_{2}=84$.

Rounding to the nearest, in precision $p \geqslant 2$, the expression [JLM13b]:

$$
f(p)=\frac{2^{3 p / 2}+5 \cdot 2^{p-1}}{2^{3 p}+2^{5 p / 2+1}}, \quad \text { with } p \text { even. }
$$

$$
\mathrm{RN}_{2}(f(2))=2^{-3}, \quad \mathrm{RN}_{4}(f(4))=2^{-6}+2^{-9}, \quad \mathrm{RN}_{24}(f(24))=2^{-36}+2^{-49}
$$

$$
\operatorname{RN}_{p}(f(p))=?
$$

Rounding to the nearest, in precision $p \geqslant 2$, the expression [JLM13b]:

$$
f(p)=\frac{2^{3 p / 2}+5 \cdot 2^{p-1}}{2^{3 p}+2^{5 p / 2+1}}, \quad \text { with } p \text { even } .
$$

$$
\mathrm{RN}_{2}(f(2))=2^{-3}, \quad \mathrm{RN}_{4}(f(4))=2^{-6}+2^{-9}, \quad \mathrm{RN}_{24}(f(24))=2^{-36}+2^{-49} ;
$$

$$
\mathrm{RN}_{p}(f(p))=?
$$

Changes of variable:

- $p=2 k$, with $k \in \mathbb{N}^{*}$, gives

$$
f(k)=\frac{2^{3 k}+5 \cdot 2^{2 k-1}}{2^{6 k}+2^{5 k+1}} \in \mathbb{S} \mathbb{Q} .
$$

- $X=2^{k}$, so that $f(k)=\tilde{f}\left(2^{k}\right)$, where

$$
\tilde{f}(X)=\frac{X^{3}+5 / 2 X^{2}}{X^{6}+2 X^{5}} \in \mathbb{Z}(X) .
$$

$$
\mathbf{p}=\mathbf{2 k} \quad \text { and } \quad \mathbf{f}(\mathbf{k})=\tilde{\mathbf{f}}\left(\mathbf{2}^{\mathbf{k}}\right) .
$$

$$
f(k)=\frac{2^{3 k}+5 \cdot 2^{2 k-1}}{2^{6 k}+2^{5 k+1}}
$$

$$
\tilde{f}(X)=\frac{2 X+5}{2 X^{4}+4 X^{3}}
$$

Asymptotic behavior as $k \rightarrow \infty$: $f(k) \sim 2^{-3 k}$
$\hookrightarrow 2^{-3 k-1} \leqslant f(k)<2^{-3 k+1}$,

Asymptotic behavior as $X \rightarrow \infty$:
$\tilde{f}(X) \sim X^{-3}$
$\hookrightarrow \frac{1}{2} X^{-3} \leqslant \tilde{f}(X)<2 X^{-3}$,

$$
\mathbf{p}=\mathbf{2 k} \quad \text { and } \quad \mathbf{f}(\mathbf{k})=\tilde{\mathbf{f}}\left(\mathbf{2}^{\mathbf{k}}\right) .
$$

$$
f(k)=\frac{2^{3 k}+5 \cdot 2^{2 k-1}}{2^{6 k}+2^{5 k+1}}
$$

$$
\tilde{f}(X)=\frac{2 X+5}{2 X^{4}+4 X^{3}}
$$

Asymptotic behavior as $k \rightarrow \infty$: $f(k)=2^{-3 k}+2^{-2 k-1}+\mathcal{O}\left(2^{-5 k}\right)$ $\hookrightarrow 2^{-3 k} \leqslant f(k)<2^{-3 k+1}$,

Asymptotic behavior as $X \rightarrow \infty$:

$$
\begin{aligned}
& \tilde{f}(X)=X^{-3}+\frac{1}{2} X^{-4}+\mathcal{O}\left(X^{-5}\right) \\
& \hookrightarrow X^{-3} \leqslant \tilde{f}(X)<2 X^{-3}
\end{aligned}
$$ $\operatorname{exponent}(f)=-3 k \quad$ and $\quad u l p_{p}(f)=2^{-5 k+1} \leftrightarrow 2 X^{-5}, \quad$ for all $k \in \mathbb{N}^{*}$.

Rounding to the nearest integer: $\operatorname{RN}_{p}(f)=\operatorname{ulp}_{p}(f) \cdot[\underbrace{\frac{f}{u l p_{p}(f)}}_{g}\rceil$

$$
\mathrm{RN}_{\mathbf{p}}(\mathbf{f})=2^{-5 \mathbf{k}+1} \cdot\lfloor\mathbf{g}\rceil \quad \text { and } \quad \mathbf{g}(\mathbf{k})=\tilde{\mathbf{g}}\left(2^{\mathbf{k}}\right)
$$

First step toward $\lfloor g\rceil$: find a symbolic integer that approximates g.

$$
g(k)=\frac{2^{3 k}+5 \cdot 2^{2 k-1}}{2^{k+1}+2^{2}}
$$

$$
\tilde{g}(X)=\frac{2 X^{3}+5 X^{2}}{4 X+8}
$$

Laurent expansion as $X \rightarrow \infty$:

$$
\tilde{g}(X)=\underbrace{\frac{1}{2} X^{2}+\frac{1}{4} X}_{\tilde{h}(k)}+\mathcal{O}(1)
$$

- $h(k) \in \mathbb{Z}$, for all $k \geqslant 2$: h is a symbolic integer;
- $g(k)-h(k)=\mathcal{O}(1)$ as $k \rightarrow \infty: h$ approximates g.

$$
\mathrm{RN}_{\mathbf{p}}(\mathbf{f})=\mathbf{2}^{-\mathbf{5 k + 1}} \cdot\lfloor\mathbf{g}\rceil \quad \text { and } \quad h \text { symbolic integer approximating } g .
$$

Second step to $\lfloor g\rceil$: correct h if needed.

$$
h(k)=2^{2 k-1}+2^{k-2}
$$

Distance to g, as $k \rightarrow \infty$:

$$
\begin{aligned}
|g(k)-h(k)|= & \frac{2^{k}}{2^{k+1}+2^{2}} \\
< & 1 / 2 \\
& \hookrightarrow\lfloor g(k)\rceil=h(k), \quad \text { for all } k \geqslant 2 .
\end{aligned}
$$

$$
\mathrm{RN}_{p}(f)=2^{-3 k}+2^{-4 k-1}, \text { for } k \geqslant 2, \text { with } p=2 k .
$$

Comparing with the earlier numerical computations:

$$
\begin{array}{ll}
\mathrm{RN}_{24}(f(24))=2^{-36}+2^{-49}, & {[\mathrm{ok}]} \\
\vdots & \\
\mathrm{RN}_{6}(f(6))=2^{-9}+2^{-13}, & {[\mathrm{ok}]} \\
\mathrm{RN}_{4}(f(4))=2^{-6}+2^{-9}, & {[\mathrm{ok}]} \\
\mathrm{RN}_{2}(f(2))=2^{-3}, & {[\mathrm{ko}]}
\end{array}
$$

\hookrightarrow Our computation matches the classical ones for all $k \geqslant 2$.

We define the following functions on $\mathbb{S Q}$:

- sign,
\hookrightarrow comparisons and absolute value,
\hookrightarrow exponent,
$\hookrightarrow \mathbf{u l p}_{p}$.

Asymptotic behaviors, with a domain of validity $\left(k \geqslant k_{0}\right)$.

We define the following functions on $\mathbb{S Q}$:

- sign,
\hookrightarrow comparisons and absolute value,
\hookrightarrow exponent,
$\hookrightarrow \mathbf{u l p}_{p}$.

Asymptotic behaviors, with a domain of validity $\left(k \geqslant k_{0}\right)$.

$$
\left.\mathrm{RN}_{p}: \mathbb{S Q} \rightarrow \mathbb{S F}_{p} \quad \leftrightarrow \quad \mid \cdot\right\rceil: \mathbb{S Q} \rightarrow \mathbb{S Z}
$$

but

Some elements of $\mathbb{S Q}$ cannot be rounded.

Outline

(1) Context and motivations

(2) A symbolic floating-point arithmetic

(3) Limitation of the model

4 Maple worksheets

In base 2 and precision $p=k$, consider [BPZO7]

$$
f(k)=\frac{2}{3}\left(1+11 \cdot 2^{-k}\right)
$$

Does $f \in \mathbb{S F}_{p}$?

In base 2 and precision $p=k$, consider [BPZO7]

$$
f(k)=\frac{2}{3}\left(1+11 \cdot 2^{-k}\right)
$$

Does $f \in \mathbb{S F}_{p}$?

$$
\operatorname{ulp}_{p}(f)=2^{-k} \Rightarrow g(k)=\frac{f}{\operatorname{ulp}_{p}(f)}=\frac{2}{3}\left(2^{k}+11\right)
$$

We have:

$$
2^{k-1} \leqslant g(k)<2^{k} \quad(\text { for } k \geqslant 5)
$$

Does $g \in \mathbb{S} \mathbb{Z}$?

In base 2 and precision $p=k$, consider [BPZO7]

$$
f(k)=\frac{2}{3}\left(1+11 \cdot 2^{-k}\right)
$$

Does $f \in \mathbb{S F}_{p}$?

$$
\operatorname{ulp}_{p}(f)=2^{-k} \Rightarrow g(k)=\frac{f}{\operatorname{ulp}_{p}(f)}=\frac{2}{3}\left(2^{k}+11\right)
$$

We have:

$$
2^{k-1} \leqslant g(k)<2^{k} \quad(\text { for } k \geqslant 5) .
$$

Does $g \in \mathbb{S Z}$?

For $k \in \mathbb{N}$, we have $2^{k}+11 \equiv(-1)^{k}-1(\bmod 3)$ so that:

- if k is even, then $g(k) \in \mathbb{Z}$;
- if k is odd, then $g(k) \notin \mathbb{Z}$.

$$
g \notin \mathbb{S Z} \Rightarrow f \notin \mathbb{S F}_{p} ; \quad \mathrm{RN}_{p}(f)=2^{-k} \cdot\lfloor g\rceil ; \quad\lfloor g\rceil=?
$$

$$
g(k)=\frac{2}{3}\left(2^{k}+11\right) \notin \mathbb{S Z} \quad \text { and } \quad g(k) \in \mathbb{Z} \text { iff } k \text { even. }
$$

There is no symbolic integer that is the nearest to g.

Sketch of the proof (by contradiction): suppose $h \in \mathbb{S} \mathbb{Z}$ approximates to g,

- $h(2 k)$ is also a symbolic integer that approximates $g(2 k)$;
- we saw that $g(2 k) \in \mathbb{S} \mathbb{Z}$;
$\hookrightarrow h(2 k)=g(2 k)+n$, with $n \in \mathbb{Z}$;
$\hookrightarrow h=g+n$;
$\hookrightarrow g=h-n \in \mathbb{S} \mathbb{Z}$.

$$
g(k)=\frac{2}{3}\left(2^{k}+11\right) \notin \mathbb{S} \mathbb{Z} \quad \text { and } \quad g(k) \in \mathbb{Z} \text { iff } k \text { even. }
$$

There is no symbolic integer that is the nearest to g.

Sketch of the proof (by contradiction): suppose $h \in \mathbb{S} \mathbb{Z}$ approximates to g,

- $h(2 k)$ is also a symbolic integer that approximates $g(2 k)$;
- we saw that $g(2 k) \in \mathbb{S} \mathbb{Z}$;
$\hookrightarrow h(2 k)=g(2 k)+n$, with $n \in \mathbb{Z}$;
$\hookrightarrow h=g+n$;
$\hookrightarrow g=h-n \in \mathbb{S} \mathbb{Z}$.

We cannot round f to a nearest symbolic floating-point number but:

- $f(2 k) \in \mathbb{S F}_{p}$ for $p=2 k$;
- $\operatorname{RN}_{p}(f(2 k+1))=\left(2^{2 k+2}+23\right) / 3$ for $p=2 k+1$.

Outline

(1) Context and motivations

(2) A symbolic floating-point arithmetic

(3) Limitation of the model
(4) Maple worksheets

```
\(\lceil>\) Kahan \(:=\operatorname{proc}(a, b, c, d, p)\)
    local wh, e, fh;
        \(w h:=m(b \cdot c, p)\);
        \(e:=w h-b \cdot c\),
        \(f h:=m(a \cdot d-w h, p)\);
        \(m(f h+e, p)\)
    end proc:
    \(p:=2 \cdot k\) :
    \(a:=S Q\left(2^{p-1}+1\right) ; b:=S Q\left(2^{p-1}+1\right): c:=S Q\left(2^{p-1}+2^{p-2}\right): d:=S Q\left(2^{p}+2^{p-2}\right):\)
                \(a:=\frac{1}{2} 4^{k}+1\)
\(>x:=a \cdot d-b \cdot c\),
    \(x h:=\operatorname{Kahan}(a, b, c, d, p) ;\)
    SQ:-getW(xh);
                        \(x:=\frac{1}{4} 16^{k}+\frac{1}{2} 4^{k}\)
        \(x n:=\frac{1}{4} 16^{k}\)
            1
\(>\) err \(:=\operatorname{abs}\left(\frac{x-x h}{x}\right)\);
    simplify (toU (err, \(p, u)\) );
\[
\begin{gathered}
\text { err:}:=\frac{2}{4^{k}+2} \\
\frac{2 u}{1+2 u}
\end{gathered}
\]
```

$$
\begin{aligned}
& \mid> \\
& \quad f:=S Q\left(\frac{2^{\frac{3 \cdot p}{2}}+5 \cdot 2^{p-1}}{\left.\right|^{\frac{5 \cdot p}{2}+1}}\right) \\
& \quad f h:=2 k(f, p) \\
& \quad \text { SQ:-getkO}(f h)
\end{aligned}
$$

$$
\begin{gathered}
p:=2 k \\
f:=\frac{1}{2} \frac{28^{k}+54^{k}}{64^{k}+232^{k}} \\
f n:=8^{-k}+\frac{1}{2} 16^{-k} \\
3
\end{gathered}
$$

```
\(\lceil>p:=k\);
    \(\mathrm{f}:=\operatorname{SQ}\left(\frac{2}{3} \cdot\left(1+11 \cdot 2^{-p}\right)\right) ;\)
    \(f h:=m(f, p)\);
    SQ:-getkO(fh);
    SQ:-getW(fh);
\[
p:=k
\]
\[
f:=\frac{2}{3}+\frac{22}{3} 2^{-k}
\]
\[
f n:=\frac{2}{3}+\frac{22}{3} 2^{-k}
\]
\[
6
\]
\[
\left[\begin{array}{rl}
> & p:=2 \cdot k+1 \\
\quad f:=\operatorname{SQ}\left(\frac{2}{3} \cdot\left(1+11 \cdot 2^{-p}\right)\right) \\
& f h:=m(f, p) \\
& S Q:-\operatorname{getkO}(f h) \\
& \text { SQ:-getW}(f h)
\end{array}\right.
\]
\[
2
\]
    \(p:=2 \cdot k+1 ;\)
    \(f:=S Q\left(\frac{2}{3} \cdot\left(1+11 \cdot 2^{-p}\right)\right) ;\)
    \(f h:=m(f, p)\);
    SQ:-getkO(fh);
    SQ:-getW(fh);
\[
\begin{gathered}
p:=2 k+1 \\
f:=\frac{2}{3}+\frac{11}{3} 4^{-k} \\
f n:=\frac{2}{3}+\frac{23}{6} 4^{-k}
\end{gathered}
\]

\section*{Conclusion and perspectives}

The current library:
- rigorous formalism for symbolic floating-point arithmetic;
- effective implementation in Maple:

27 examples [BPZ07, JLM13a, JLM13b, Mul15] within 1.5s on this laptop;
- other rounding modes are implemented.

Preprint available at https://hal.inria.fr/hal-01232159

Perspectives
- extend the model to handle more operations;
- automatic search for examples for which the final error is close to the bound;
- transfer to a formal proof system to increase the confidence.

\section*{References}
A. Avizienis.

Signed-digit number representations for fast parallel arithmetic.
IRE Transactions on Electronic Computers, 10:389-400, 1961.
N. Brisebarre and J.-M. Muller.

Correct rounding of algebraic functions.
Theoretical Informatics and Applications, 41:71-83, 2007.
Richard Brent, Colin Percival, and Paul Zimmermann.
Error bounds on complex floating-point multiplication.
Mathematics of Computation, 76:1469-1481, 2007.
[
IEEE Computer Society.
IEEE Standard for Floating-Point Arithmetic.
IEEE Standard 754-2008, August 2008.
available at http://ieeexplore.ieee.org/servlet/opac?punumber=4610933.

\section*{References}
C. Iordache and D. W. Matula.

On infinitely precise rounding for division, square root, reciprocal and square root reciprocal.
In 14th IEEE Symposium on Computer Arithmetic, Adelaide, Australia, pages 233-240, 1999.


Claude-Pierre Jeannerod, Nicolas Louvet, and Jean-Michel Muller.
Further analysis of Kahan's algorithm for the accurate computation of \(2 \times 2\) determinants.
Mathematics of Computation, 82:2245-2264, 2013.Claude-Pierre Jeannerod, Nicolas Louvet, and Jean-Michel Muller.
On the componentwise accuracy of complex floating-point division with an FMA.
In 21st IEEE Symposium on Computer Arithmetic, Austin, TX, USA, pages 83-90, 2013.
Jean-Michel Muller.
On the error of computing \(a b+c d\) using Cornea, Harrison and Tang's method.
ACM Transactions on Mathematical Software, 41(2):7:1-7:8, February 2015.```

