Analyse d'Algorithmes en Arithmétique à Virgule Flottante

Claude-Pierre Jeannerod

Inria - LIP, ENS de Lyon

Context

Starting point:
How do numerical algorithms behave in finite precision arithmetic?

Typically,

- basic matrix computations: $A x=b, \ldots$
- floating-point data and arithmetic as specified by IEEE 754.

Ideally, we'd like to guarantee a priori that the computed solution \widehat{x} has some kind of numerical quality:

- the forward error $\|x-\widehat{x}\|$ is 'small',
- the backward error $\|\Delta A\|$ such that $(A+\Delta A) \widehat{x}=b$ is 'small'.

Context

To get such guarantees, a key tool is backward error analysis:

- developed by Wilkinson in the 1960's,
- identifies nearby problems solved exactly: $\widehat{x}=(A+\Delta A)^{-1} b$,
- relies on a standard model of floating-point arithmetic,
- eminently powerful; see e.g. Higham's book:

Context

The standard model says that the result \widehat{r} of a single operation x op y in floating-point arithmetic satisfies

$$
\widehat{r}=(x \text { op } y) \times(1+\delta), \quad|\delta| \leqslant u
$$

- Simple and handy.
- But does not express all the features of IEEE 754.

Context

The standard model says that the result \hat{r} of a single operation x op y in floating-point arithmetic satisfies

$$
\widehat{r}=(x \circ p y) \times(1+\delta), \quad|\delta| \leqslant u
$$

- Simple and handy.
- But does not express all the features of IEEE 754.

Our goal: show the benefits of exploiting some lower-level features:

1. Optimal bounds for basic operations,
2. Simpler and sharper Wilkinson-style error analysis,
3. Explain why some tiny kernels behave so well.

Context

Floating-point arithmetic

Error properties of arithmetic operations over \mathbb{F}

Some Wilkinson's bounds made simpler and sharper

Analyzing highly accurate kernels

Conclusion

Floating-point data

$$
\mathbb{F}:=\{0\} \cup\left\{ \pm M \cdot \beta^{e-p+1}: \beta^{p-1} \leqslant M<\beta^{p}, \quad e_{\min } \leqslant e \leqslant e_{\max }\right\}
$$

- base β,
- precision p,
- exponent range defined by $e_{\text {min }}$ and $e_{\text {max }}$.

Floating-point data

$$
\mathbb{F}:=\{0\} \cup\left\{ \pm M \cdot \beta^{e-p+1}: \beta^{p-1} \leqslant M<\beta^{p}, \quad e_{\min } \leqslant e \leqslant e_{\max }\right\} .
$$

- base β,
- precision p,
- exponent range defined by $e_{\text {min }}$ and $e_{\text {max }}$.

We assume

- $e_{\text {min }}=-\infty$ and $e_{\text {max }}=+\infty$: unbounded exponent range,
- β is even.

Floating-point data

- $x \in \mathbb{F} \backslash\{0\} \quad \Rightarrow \quad|x|=m \cdot \beta^{e}, \quad m=(* \cdot \underbrace{* \cdots *}_{p-1})_{\beta} \in[1, \beta)$.
- Three useful "units":
- Unit in the first place: $u f p(x)=\beta^{e}$,
- Unit in the last place: $u \operatorname{lp}(x)=\beta^{e-p+1}$,
- Unit roundoff: $u=\frac{1}{2} \beta^{1-p}$.

Floating-point data

- $x \in \mathbb{F} \backslash\{0\} \quad \Rightarrow \quad|x|=m \cdot \beta^{e}, \quad m=(* \cdot \underbrace{* \cdots *}_{p-1})_{\beta} \in[1, \beta)$.
- Three useful "units":
- Unit in the first place: $u f p(x)=\beta^{e}$,
- Unit in the last place: $u \operatorname{lp}(x)=\beta^{e-p+1}$,
- Unit roundoff: $u=\frac{1}{2} \beta^{1-p}$.
- Alternative views, which display the structure of \mathbb{F} very well:
- $x \in \operatorname{ulp}(x) \mathbb{Z}$,
- $|x|=(1+2 k u) \operatorname{ufp}(x), \quad k \in \mathbb{N}$.

$$
\Rightarrow \quad \mathbb{F} \cap[1, \beta)=\{1,1+2 u, 1+4 u, \ldots\} .
$$

Rounding function

Round-to-nearest function $\mathrm{RN}: \mathbb{R} \rightarrow \mathbb{F}$ such that

$$
\forall t \in \mathbb{R}, \quad|\operatorname{RN}(t)-t|=\min _{f \in \mathbb{F}}|f-t|,
$$

with given tie-breaking rule.

REAL NUMBERS

Rounding function

Round-to-nearest function $\mathrm{RN}: \mathbb{R} \rightarrow \mathbb{F}$ such that

$$
\forall t \in \mathbb{R}, \quad|\operatorname{RN}(t)-t|=\min _{f \in \mathbb{F}}|f-t|
$$

with given tie-breaking rule.

- $t \in \mathbb{F} \Rightarrow \mathrm{RN}(t)=t$
- RN nondecreasing
- reasonable tie-breaking rule:
- $\operatorname{RN}(-t)=-\operatorname{RN}(t)$
- $\mathrm{RN}\left(t \beta^{e}\right)=\mathrm{RN}(t) \beta^{e}, e \in \mathbb{Z}$

Error bounds for real numbers

$$
E_{1}(t):=\frac{|\operatorname{RN}(t)-t|}{|t|} \leqslant \frac{u}{1+u}, \quad E_{2}(t):=\frac{|\operatorname{RN}(t)-t|}{|\operatorname{RN}(t)|} \leqslant u .
$$

Error bounds for real numbers

$$
E_{1}(t):=\frac{|\operatorname{RN}(t)-t|}{|t|} \leqslant \frac{u}{1+u}, \quad E_{2}(t):=\frac{|\operatorname{RN}(t)-t|}{|\operatorname{RN}(t)|} \leqslant u .
$$

Proof:

- Assume $1 \leqslant t<\beta$, so that

$$
\operatorname{RN}(t) \in\{1,1+2 u, 1+4 u, \ldots, \beta\} .
$$

Error bounds for real numbers

$$
E_{1}(t):=\frac{|\operatorname{RN}(t)-t|}{|t|} \leqslant \frac{u}{1+u}, \quad E_{2}(t):=\frac{|\operatorname{RN}(t)-t|}{|\operatorname{RN}(t)|} \leqslant u .
$$

Proof:

- Assume $1 \leqslant t<\beta$, so that

$$
\operatorname{RN}(t) \in\{1,1+2 u, 1+4 u, \ldots, \beta\} .
$$

- Then $|\mathrm{RN}(t)-t| \leqslant \frac{1}{2} \times 2 u=u$.

Error bounds for real numbers

$$
E_{1}(t):=\frac{|\operatorname{RN}(t)-t|}{|t|} \leqslant \frac{u}{1+u}, \quad E_{2}(t):=\frac{|\operatorname{RN}(t)-t|}{|\operatorname{RN}(t)|} \leqslant u .
$$

Proof:

- Assume $1 \leqslant t<\beta$, so that

$$
\operatorname{RN}(t) \in\{1,1+2 u, 1+4 u, \ldots, \beta\} .
$$

- Then $|\mathrm{RN}(t)-t| \leqslant \frac{1}{2} \times 2 u=u$.
- Dividing by $\mathrm{RN}(t) \geqslant 1$ gives directly the bound on E_{2}.

Error bounds for real numbers

$$
E_{1}(t):=\frac{|\operatorname{RN}(t)-t|}{|t|} \leqslant \frac{u}{1+u}, \quad E_{2}(t):=\frac{|\operatorname{RN}(t)-t|}{|\operatorname{RN}(t)|} \leqslant u .
$$

Proof:

- Assume $1 \leqslant t<\beta$, so that

$$
\operatorname{RN}(t) \in\{1,1+2 u, 1+4 u, \ldots, \beta\} .
$$

- Then $|\mathrm{RN}(t)-t| \leqslant \frac{1}{2} \times 2 u=u$.
- Dividing by $\mathrm{RN}(t) \geqslant 1$ gives directly the bound on E_{2}.
- If $t \geqslant 1+u$ then the bound $E_{1}(t) \leqslant \frac{u}{1+u}$ follows.

Error bounds for real numbers

$$
E_{1}(t):=\frac{|\operatorname{RN}(t)-t|}{|t|} \leqslant \frac{u}{1+u}, \quad E_{2}(t):=\frac{|\operatorname{RN}(t)-t|}{|\operatorname{RN}(t)|} \leqslant u .
$$

Proof:

- Assume $1 \leqslant t<\beta$, so that

$$
\operatorname{RN}(t) \in\{1,1+2 u, 1+4 u, \ldots, \beta\} .
$$

- Then $|\mathrm{RN}(t)-t| \leqslant \frac{1}{2} \times 2 u=u$.
- Dividing by $\mathrm{RN}(t) \geqslant 1$ gives directly the bound on E_{2}.
- If $t \geqslant 1+u$ then the bound $E_{1}(t) \leqslant \frac{u}{1+u}$ follows.
- Else $1 \leqslant t<1+u \Rightarrow \operatorname{RN}(t)=1 \Rightarrow E_{1}(t)=\frac{t-1}{t}<\frac{u}{1+u}$.

Error bounds for real numbers

$$
E_{1}(t):=\frac{|\operatorname{RN}(t)-t|}{|t|} \leqslant \frac{u}{1+u}, \quad E_{2}(t):=\frac{|\operatorname{RN}(t)-t|}{|\operatorname{RN}(t)|} \leqslant u .
$$

Proof:

- Assume $1 \leqslant t<\beta$, so that

$$
\operatorname{RN}(t) \in\{1,1+2 u, 1+4 u, \ldots, \beta\} .
$$

- Then $|\mathrm{RN}(t)-t| \leqslant \frac{1}{2} \times 2 u=u$.
- Dividing by $\mathrm{RN}(t) \geqslant 1$ gives directly the bound on E_{2}.
- If $t \geqslant 1+u$ then the bound $E_{1}(t) \leqslant \frac{u}{1+u}$ follows.
- Else $1 \leqslant t<1+u \Rightarrow \operatorname{RN}(t)=1 \Rightarrow E_{1}(t)=\frac{t-1}{t}<\frac{u}{1+u}$.

Bound $\frac{u}{1+u}$: sharp and well known [Dekker'71, Holm'80, Knuth'81-98], but simpler bound u almost always used in practice.

Correct rounding

This is the result of the composition of two functions: basic operations performed exactly, and exact result then rounded:

$$
x, y \in \mathbb{F}, \quad \text { op }= \pm, \times, \div \quad \Rightarrow \quad \text { return } \widehat{r}:=\operatorname{RN}(x \text { op } y)
$$

op extends to square root and FMA (fused multiply add: $x y+z$).

Correct rounding

This is the result of the composition of two functions: basic operations performed exactly, and exact result then rounded:

$$
x, y \in \mathbb{F}, \quad \text { op }= \pm, \times, \div \quad \Rightarrow \quad \text { return } \widehat{r}:=\operatorname{RN}(x \text { op } y)
$$

op extends to square root and FMA (fused multiply add: $x y+z$).

- The error bounds on E_{1} and E_{2} yield two standard models:

$$
\begin{aligned}
\hat{r} & =(x \text { op } y) \times\left(1+\delta_{1}\right), \quad\left|\delta_{1}\right| \leqslant \frac{u}{1+u}=: u_{1}, \\
& =(x \circ p y) \times \frac{1}{1+\delta_{2}}, \quad\left|\delta_{2}\right| \leqslant u .
\end{aligned}
$$

Example

$$
\text { Let } r=\frac{x+y}{2} \text { be evaluated naively as } \widehat{r}=\operatorname{RN}\left(\frac{\operatorname{RN}(x+y)}{2}\right) \text {. }
$$

Example

$$
\text { Let } r=\frac{x+y}{2} \text { be evaluated naively as } \widehat{r}=\operatorname{RN}\left(\frac{\operatorname{RN}(x+y)}{2}\right) \text {. }
$$

- High relative accuracy is ensured:

$$
\begin{aligned}
\widehat{r} & =\frac{\mathrm{RN}(x+y)}{2}\left(1+\delta_{1}\right), \quad\left|\delta_{1}\right| \leqslant u_{1}, \\
& =\frac{x+y}{2}\left(1+\delta_{1}\right)\left(1+\delta_{1}^{\prime}\right), \quad\left|\delta_{1}^{\prime}\right| \leqslant u_{1}, \\
& =: r(1+\epsilon), \quad|\epsilon| \leqslant 2 u .
\end{aligned}
$$

Example

$$
\text { Let } r=\frac{x+y}{2} \text { be evaluated naively as } \hat{r}=\operatorname{RN}\left(\frac{\operatorname{RN}(x+y)}{2}\right) \text {. }
$$

- High relative accuracy is ensured:

$$
\begin{aligned}
\widehat{r} & =\frac{\mathrm{RN}(x+y)}{2}\left(1+\delta_{1}\right), \quad\left|\delta_{1}\right| \leqslant u_{1} \\
& =\frac{x+y}{2}\left(1+\delta_{1}\right)\left(1+\delta_{1}^{\prime}\right), \quad\left|\delta_{1}^{\prime}\right| \leqslant u_{1}, \\
& =: r(1+\epsilon), \quad|\epsilon| \leqslant 2 u .
\end{aligned}
$$

- We'd also like to have $\min (x, y) \leqslant \widehat{r} \leqslant \max (x, y)$...

Example

x Not always true:

$$
\beta=10, p=3 \Rightarrow \operatorname{RN}\left(\frac{\mathrm{RN}(5.01+5.03)}{2}\right)=\mathrm{RN}\left(\frac{10}{2}\right)=5 .
$$

Example

x Not always true:

$$
\beta=10, p=3 \Rightarrow \operatorname{RN}\left(\frac{\mathrm{RN}(5.01+5.03)}{2}\right)=\mathrm{RN}\left(\frac{10}{2}\right)=5 .
$$

\checkmark True in base two or if $\operatorname{sign}(x) \neq \operatorname{sign}(y)$.

Example

X Not always true:

$$
\beta=10, p=3 \Rightarrow \operatorname{RN}\left(\frac{\mathrm{RN}(5.01+5.03)}{2}\right)=\mathrm{RN}\left(\frac{10}{2}\right)=5 .
$$

\checkmark True in base two or if $\operatorname{sign}(x) \neq \operatorname{sign}(y)$.
Proof for base two:

- $\hat{r}:=\operatorname{RN}\left(\frac{\operatorname{RN}(x+y)}{2}\right)=\operatorname{RN}\left(\frac{x+y}{2}\right)$.
- $x \leqslant \frac{x+y}{2} \leqslant y \quad \Rightarrow \quad \mathrm{RN}(x) \leqslant \operatorname{RN}\left(\frac{x+y}{2}\right) \leqslant \operatorname{RN}(y)$

$$
\Rightarrow \quad x \leqslant \widehat{r} \leqslant y
$$

Example

x Not always true:

$$
\beta=10, p=3 \Rightarrow \operatorname{RN}\left(\frac{\mathrm{RN}(5.01+5.03)}{2}\right)=\mathrm{RN}\left(\frac{10}{2}\right)=5 .
$$

\checkmark True in base two or if $\operatorname{sign}(x) \neq \operatorname{sign}(y)$.
Proof for base two:

- $\hat{r}:=\operatorname{RN}\left(\frac{\operatorname{RN}(x+y)}{2}\right)=\operatorname{RN}\left(\frac{x+y}{2}\right)$.
- $x \leqslant \frac{x+y}{2} \leqslant y \quad \Rightarrow \quad \mathrm{RN}(x) \leqslant \mathrm{RN}\left(\frac{x+y}{2}\right) \leqslant \mathrm{RN}(y)$

$$
\Rightarrow \quad x \leqslant \widehat{r} \leqslant y .
$$

\hookrightarrow Repair other cases using $r=x+\frac{y-x}{2}$. [Sterbenz'74, Boldo'15]

Context

Floating-point arithmetic

Error properties of arithmetic operations over \mathbb{F}

> Some Wilkinson's bounds made simpler and sharper

> Analyzing highly accurate kernels

Conclusion

Conditions for exact subtraction

Sterbenz' lemma:
[Sterbenz'74]

$$
x, y \in \mathbb{F}, \quad \frac{y}{2} \leqslant x \leqslant 2 y \quad \Rightarrow \quad x-y \in \mathbb{F} .
$$

Conditions for exact subtraction

Sterbenz' lemma:

$$
x, y \in \mathbb{F}, \quad \frac{y}{2} \leqslant x \leqslant 2 y \quad \Rightarrow \quad x-y \in \mathbb{F}
$$

- Valid for any base β.
- Applications: Cody and Waite's range reduction, Kahan's accurate algorithms (discriminants, triangle area), ...

Conditions for exact subtraction

Sterbenz' lemma:

$$
x, y \in \mathbb{F}, \quad \frac{y}{2} \leqslant x \leqslant 2 y \quad \Rightarrow \quad x-y \in \mathbb{F}
$$

- Valid for any base β.
- Applications: Cody and Waite's range reduction, Kahan's accurate algorithms (discriminants, triangle area), ...
- Proof:
- assume $0<y \leqslant x \leqslant 2 y$.
- ulp $(y) \leqslant \operatorname{ulp}(x) \Rightarrow x-y \in \beta^{e} \mathbb{Z}$ with $\beta^{e}=u \operatorname{lp}(y)$.
- $\frac{x-y}{\beta^{e}}$ is an integer such that $0 \leqslant \frac{x-y}{\beta^{e}} \leqslant \frac{y}{u \operatorname{lp}(y)}<\beta^{p}$.

Representable error terms

Addition and multiplication:

$$
x, y \in \mathbb{F}, \quad \text { op } \in\{+, x\} \quad \Rightarrow \quad x \text { op } y-\operatorname{RN}(x \circ p y) \in \mathbb{F}
$$

Division and square root:

$$
x-y \operatorname{RN}(x / y) \in \mathbb{F}, \quad x-\operatorname{RN}(\sqrt{x})^{2} \in \mathbb{F}
$$

- Noted quite early. [Dekker'71, Pichat'76, Bohlender et al.'91]
- RN required only for ADD and SQRT.
[Boldo \& Daumas'03]

FMA: its error is the sum of two floats.
[Boldo \& Muller'11]

Error-free transformations (EFT)

Floating-point algorithms for computing such error terms exactly:

- $x+y-\mathrm{RN}(x+y)$ in 6 additions [Møller'65, Knuth] and not less
[Kornerup, Lefèvre, Louvet, Muller'12]

Error-free transformations (EFT)

Floating-point algorithms for computing such error terms exactly:

- $x+y-\mathrm{RN}(x+y)$ in 6 additions [Møller'65, Knuth] and not less
[Kornerup, Lefèvre, Louvet, Muller'12]
- $x y-\mathrm{RN}(x y)$ can be obtained
- in 17 + and x
[Dekker'71, Boldo'06]
- in only 2 ops if an FMA is available:

$$
\widehat{z}:=\operatorname{RN}(x y) \quad \Rightarrow \quad x y-\widehat{z}=\operatorname{FMA}(x, y,-\widehat{z}) .
$$

Error-free transformations (EFT)

Floating-point algorithms for computing such error terms exactly:

- $x+y-\mathrm{RN}(x+y)$ in 6 additions [Møller'65, Knuth] and not less [Kornerup, Lefèvre, Louvet, Muller'12]
- $x y-\mathrm{RN}(x y)$ can be obtained
- in $17+$ and x
[Dekker'71, Boldo'06]
- in only 2 ops if an FMA is available:

$$
\widehat{z}:=\operatorname{RN}(x y) \quad \Rightarrow \quad x y-\widehat{z}=\operatorname{FMA}(x, y,-\widehat{z}) .
$$

- Similar FMA-based EFT for DIV, SQRT ... and FMA.

EFT are key for extended precision algorithms: error compensation [Kahan'65, ..., Higham'96, Ogita, Rump, Oishi'04+, Graillat, Langlois, Louvet'05+, ...], floating-point expansions [Priest'91, Shewchuk'97, Joldes, Muller, Popescu'14+].

Optimal relative error bounds

When t can be any real number, $E_{1}(t) \leqslant \frac{u}{1+u}$ and $E_{2}(t) \leqslant u$ are best possible:

$$
t:=1+u \Rightarrow \mathrm{RN}(t) \text { is } 1 \text { or } 1+2 u \Rightarrow|t-\mathrm{RN}(t)|=u
$$

Optimal relative error bounds

When t can be any real number, $E_{1}(t) \leqslant \frac{u}{1+u}$ and $E_{2}(t) \leqslant u$ are best possible:

$$
t:=1+u \Rightarrow \mathrm{RN}(t) \text { is } 1 \text { or } 1+2 u \Rightarrow|t-\mathrm{RN}(t)|=u
$$

Hence

$$
E_{1}(t)=\frac{u}{1+u}
$$

Optimal relative error bounds

When t can be any real number, $E_{1}(t) \leqslant \frac{u}{1+u}$ and $E_{2}(t) \leqslant u$ are best possible:

$$
t:=1+u \Rightarrow \mathrm{RN}(t) \text { is } 1 \text { or } 1+2 u \Rightarrow|t-\mathrm{RN}(t)|=u
$$

Hence

$$
E_{1}(t)=\frac{u}{1+u}
$$

and, if rounding ties "to even", $\mathrm{RN}(t)=1$ and thus

$$
E_{2}(t)=u
$$

Optimal relative error bounds

When t can be any real number, $E_{1}(t) \leqslant \frac{u}{1+u}$ and $E_{2}(t) \leqslant u$ are best possible:

$$
t:=1+u \Rightarrow \mathrm{RN}(t) \text { is } 1 \text { or } 1+2 u \Rightarrow|t-\mathrm{RN}(t)|=u
$$

Hence

$$
E_{1}(t)=\frac{u}{1+u}
$$

and, if rounding ties "to even", $\mathrm{RN}(t)=1$ and thus

$$
E_{2}(t)=u
$$

These are examples of optimal bounds:

- valid for all (t, RN) with t of a certain type;
- attained for some (t, RN) with t parametrized by β and p.

Can we do better when $t=x$ op y and $x, y \in \mathbb{F}$?

This depends on op and, sometimes, on β and p. [J. \& Rump'14]

Can we do better when $t=x$ op y and $x, y \in \mathbb{F}$?

This depends on op and, sometimes, on β and p. [J. \& Rump'14]

t	optimal bound on $E_{1}(t)$	optimal bound on $E_{2}(t)$
$x \pm y$	$\frac{u}{1+u}$	u
$x y$	$\frac{u}{1+u} \quad(\star)$	$u \quad(\star)$
x / y	$\left\{\begin{array}{cl}\frac{u}{1+u} & \text { if } \beta>2, \\ u-2 u^{2} & \text { if } \beta=2\end{array}\right.$	$\left\{\begin{array}{cc}u & \text { if } \beta>2, \\ \frac{u-2 u^{2}}{1+u-2 u^{2}} & \text { if } \beta=2\end{array}\right.$
\sqrt{x}	$1-\frac{1}{\sqrt{1+2 u}}$	$\sqrt{1+2 u}-1$

(\star) iff $\beta>2$ or $2^{p}+1$ is not a Fermat prime.
\longrightarrow Two standard models for each arithmetic operation.
\longrightarrow Application: sharper bounds and/or much simpler proofs.

Context

Floating-point arithmetic

Error properties of arithmetic operations over \mathbb{F}

Some Wilkinson's bounds made simpler and sharper

Analyzing highly accurate kernels

Conclusion

Floating-point summation

Given $x_{1}, \ldots, x_{n} \in \mathbb{F}$, evaluate their sum in any order.
Classical analysis [Wilkinson'60]:

- Apply the standard model $n-1$ times.
- Deduce that the computed value $\widehat{s} \in \mathbb{F}$ satisfies

$$
\left|\widehat{s}-\sum_{i=1}^{n} x_{i}\right| \leqslant \alpha \sum_{i=1}^{n}\left|x_{i}\right|, \quad \alpha=(1+u)^{n-1}-1
$$

Floating-point summation

Given $x_{1}, \ldots, x_{n} \in \mathbb{F}$, evaluate their sum in any order.
Classical analysis [Wilkinson'60]:

- Apply the standard model $n-1$ times.
- Deduce that the computed value $\widehat{s} \in \mathbb{F}$ satisfies

$$
\left|\widehat{s}-\sum_{i=1}^{n} x_{i}\right| \leqslant \alpha \sum_{i=1}^{n}\left|x_{i}\right|, \quad \alpha=(1+u)^{n-1}-1
$$

\checkmark Easy to derive, valid for any order, asymptotically optimal:

$$
\frac{\text { error }}{\text { error bound }} \rightarrow 1 \text { as } u \rightarrow 0 .
$$

Floating-point summation

Given $x_{1}, \ldots, x_{n} \in \mathbb{F}$, evaluate their sum in any order.
Classical analysis [Wilkinson'60]:

- Apply the standard model $n-1$ times.
- Deduce that the computed value $\widehat{s} \in \mathbb{F}$ satisfies

$$
\left|\widehat{s}-\sum_{i=1}^{n} x_{i}\right| \leqslant \alpha \sum_{i=1}^{n}\left|x_{i}\right|, \quad \alpha=(1+u)^{n-1}-1
$$

\checkmark Easy to derive, valid for any order, asymptotically optimal:

$$
\frac{\text { error }}{\text { error bound }} \rightarrow 1 \text { as } u \rightarrow 0 .
$$

\boldsymbol{x} But $\alpha=(n-1) u+O\left(u^{2}\right)$, which hides a constant. So, classically bounded as
$\alpha \leqslant \gamma_{n-1}, \quad \gamma_{k}=\frac{k u}{1-k u}, \quad k u<1$.
[Higham'96]

A simpler, $O\left(u^{2}\right)$-free bound

Theorem [Rump'12]
For recursive summation, one can take $\alpha=(n-1) u$.

A simpler, $O\left(u^{2}\right)$-free bound

Theorem [Rump'12]
For recursive summation, one can take $\alpha=(n-1) u$.
To prove this,
X don't use just the refined standard model, since

$$
\left(1+\frac{u}{1+u}\right)^{n-1}-1 \leqslant(n-1) u
$$

only for $n \leqslant 4$.

A simpler, $O\left(u^{2}\right)$-free bound

Theorem [Rump'12]
For recursive summation, one can take $\alpha=(n-1) u$.
To prove this,
X it might be difficult to use the usual backward error analysis:

- $\widehat{s}=\sum_{i} x_{i}\left(1+\theta_{i}\right)$,
- $\left|\widehat{s}-\sum_{i} x_{i}\right| \leqslant \max _{i}\left|\theta_{i}\right| \cdot \sum_{i}\left|x_{i}\right|$,

A simpler, $O\left(u^{2}\right)$-free bound

Theorem [Rump'12]
For recursive summation, one can take $\alpha=(n-1) u$.
To prove this,
X it might be difficult to use the usual backward error analysis:

- $\widehat{s}=\sum_{i} x_{i}\left(1+\theta_{i}\right)$,
- $\left|\widehat{s}-\sum_{i} x_{i}\right| \leqslant \max _{i}\left|\theta_{i}\right| \cdot \sum_{i}\left|x_{i}\right|$,
since for

$$
1+u-u+u-u+\cdots
$$

and RN with ties 'to away'

$$
\begin{aligned}
\max _{i}\left|\theta_{i}\right| & =\left(1+\frac{u}{1+u}\right)^{n-1}-1 \\
& =(n-1) u+O\left(u^{2}\right) .
\end{aligned}
$$

A simpler, $O\left(u^{2}\right)$-free bound

Theorem [Rump'12]
For recursive summation, one can take $\alpha=(n-1) u$.
To prove this,

- Proceed forward;

A simpler, $O\left(u^{2}\right)$-free bound

Theorem [Rump'12]
For recursive summation, one can take $\alpha=(n-1) u$.
To prove this,

- Proceed forward;
- Combine

$$
\begin{equation*}
|\operatorname{RN}(x+y)-(x+y)| \leqslant \frac{u}{1+u}|x+y| \tag{1}
\end{equation*}
$$

with the lower-level property

$$
\begin{align*}
|\operatorname{RN}(x+y)-(x+y)| & \leqslant|f-(x+y)|, \quad \forall f \in \mathbb{F} \\
& \leqslant \min \{|x|,|y|\} ; \tag{2}
\end{align*}
$$

A simpler, $O\left(u^{2}\right)$-free bound

Theorem [Rump'12]
For recursive summation, one can take $\alpha=(n-1) u$.
To prove this,

- Proceed forward;
- Combine

$$
\begin{equation*}
|\operatorname{RN}(x+y)-(x+y)| \leqslant \frac{u}{1+u}|x+y| \tag{1}
\end{equation*}
$$

with the lower-level property

$$
\begin{align*}
|\operatorname{RN}(x+y)-(x+y)| & \leqslant|f-(x+y)|, \quad \forall f \in \mathbb{F} \\
& \leqslant \min \{|x|,|y|\} ; \tag{2}
\end{align*}
$$

- Conclude by induction on n with a clever case-distinction comparing $\left|x_{n}\right|$ to $u \cdot \sum_{i<n}\left|x_{i}\right|$, and using either (1) or (2).

Wilkinson's bounds revisited

Problem	Classical α	New α	Ref.
summation	$(n-1) u+O\left(u^{2}\right)$	$(n-1) u$	$[1]$

Wilkinson's bounds revisited

$\left.\begin{array}{cccc}\text { Problem } & \text { Classical } \alpha & \text { New } \alpha & \text { Ref. } \\ \text { summation } & (n-1) u+O\left(u^{2}\right) & (n-1) u & {[1]} \\ \text { dot prod., mat. mul. } & n u+O\left(u^{2}\right) & n u & {[1]} \\ \text { Euclidean norm } & \left(\frac{n}{2}+1\right) u+O\left(u^{2}\right) & \left(\frac{n}{2}+1\right) u & {[2]} \\ T x=b, \quad A=L U & n u+O\left(u^{2}\right) & n u & \text { [2] } \\ A=R^{T} R & (n+1) u+O\left(u^{2}\right) & (n+1) u & {[2]} \\ \left.x^{n} \text { (recursive, } \beta=2\right) & (n-1) u+O\left(u^{2}\right) & (n-1) u & (\star) \\ \text { product } x_{1} x_{2} \cdots x_{n} & (n-1) u+O\left(u^{2}\right) & (n-1) u & (\star) \\ \text { [3] } \\ \text { poly. eval. (Horner) } & 2 n u+O\left(u^{2}\right) & 2 n u & (\star)\end{array}\right]$ [4]

Remarks

- Except for Horner's rule, these bounds hold for any ordering.
- Further refinements are possible:
- using $u_{1}:=\frac{u}{1+u}$ instead of u;
- assuming recursive summation and 20nu <1. [Mascarenhas'16]

Remarks

- Except for Horner's rule, these bounds hold for any ordering.
- Further refinements are possible:
- using $u_{1}:=\frac{u}{1+u}$ instead of u;
- assuming recursive summation and 20nu <1. [Mascarenhas'16]
- Key ingredients for analyzing Horner's rule in degree n :
- see it as $(\times)(+\times) \cdots(+\times)(+)$;
- bound the relative error of $\operatorname{RN}(\operatorname{RN}(x+y) z)$ by

$$
\left(1+u_{1}\right)\left(1+u_{\varphi}\right)-1, \quad u_{\varphi} \approx \frac{u}{1+\sqrt{u}}
$$

- show that $\alpha \leqslant\left(1+u_{1}\right)^{n+1}\left(1+u_{\varphi}\right)^{n-1}-1 \leqslant 2 n u$.

Context

Floating-point arithmetic

Error properties of arithmetic operations over \mathbb{F}

Some Wilkinson's bounds made simpler and sharper

Analyzing highly accurate kernels

Conclusion

Kahan's algorithm for $a d-b c$

Kahan's algorithm uses the FMA to evaluate $\operatorname{det}\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]=a d-b c$:

$$
\begin{aligned}
& \widehat{w}:=\operatorname{RN}(b c) ; \\
& \widehat{f}:=\operatorname{RN}(a d-\widehat{w}) ; \quad e:=\operatorname{RN}(\widehat{w}-b c) ; \\
& \widehat{r}:=\operatorname{RN}(\widehat{f}+e) ;
\end{aligned}
$$

Kahan's algorithm for $a d-b c$

Kahan's algorithm uses the FMA to evaluate $\operatorname{det}\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]=a d-b c$:

$$
\begin{aligned}
& \widehat{w}:=\operatorname{RN}(b c) ; \\
& \widehat{f}:=\operatorname{RN}(a d-\widehat{w}) ; \quad e:=\operatorname{RN}(\widehat{w}-b c) ; \\
& \widehat{r}:=\operatorname{RN}(\widehat{f}+e) ;
\end{aligned}
$$

- The operation $a d-b c$ is not in IEEE 754, but very common:
- complex arithmetic,
- discriminant of a quadratic equation,
- robust orientation predicates using tests like 'ad -bc>e?'
- If evaluated naively, ad -bc leads to highly inaccurate results:

$$
\frac{|\widehat{f}-r|}{|r|} \text { can be of the order of } u^{-1} \gg 1
$$

Kahan's algorithm for $a d-b c$

- Analysis in the standard model [Higham'96]:

$$
\frac{|\widehat{r}-r|}{|r|} \leqslant 2 u\left(1+\frac{u|b c|}{2|r|}\right) .
$$

\Rightarrow high relative accuracy as long as $u|b c| \ngtr 2|r|$.

Kahan's algorithm for $a d-b c$

- Analysis in the standard model [Higham'96]:

$$
\frac{|\widehat{r}-r|}{|r|} \leqslant 2 u\left(1+\frac{u|b c|}{2|r|}\right) .
$$

\Rightarrow high relative accuracy as long as $u|b c| \ngtr 2|r|$.

- When $u|b c| \gg 2|r|$, the error bound can be >1 and does not even allow to conclude that $\operatorname{sign}(\widehat{r})=\operatorname{sign}(r)$.

Kahan's algorithm for $a d-b c$

- Analysis in the standard model [Higham'96]:

$$
\frac{|\widehat{r}-r|}{|r|} \leqslant 2 u\left(1+\frac{u|b c|}{2|r|}\right) .
$$

\Rightarrow high relative accuracy as long as $u|b c| \ngtr 2|r|$.

- When $u|b c| \gg 2|r|$, the error bound can be >1 and does not even allow to conclude that $\operatorname{sign}(\widehat{r})=\operatorname{sign}(r)$.

In fact, Kahan's algorithm is always highly accurate:
X the standard model alone fails to predict this;
X misinterpreting bounds \Rightarrow dismissing good algorithms.

Further analysis

[J., Louvet, Muller'13]

The key is an ulp-analysis of the error terms ϵ_{1} and ϵ_{2} given by:

$$
\begin{array}{|l|l}
\widehat{w}:=\operatorname{RN}(b c) ; \\
\widehat{f}:=\operatorname{RN}(a d-\widehat{w}) ; \quad e:=\operatorname{RN}(\widehat{w}-b c) ; & \\
\widehat{r}:=\operatorname{RN}(\widehat{f}+e) ; & \widehat{f}=a d-\widehat{w}+\epsilon_{1} \\
\widehat{r}=\widehat{f}+e+\epsilon_{2}
\end{array}
$$

- Since e is exactly $\widehat{w}-b c$, we have $\widehat{r}-r=\epsilon_{1}+\epsilon_{2}$.
- Furthermore, we can prove that $\left|\epsilon_{i}\right| \leqslant \frac{\beta}{2} \mathrm{u} \operatorname{lp}(r)$ for $i=1,2$.

$$
\text { Proposition: }|\widehat{r}-r| \leqslant \beta \text { ulp }(r) \leqslant 2 \beta u|r|
$$

Further analysis

[J., Louvet, Muller'13]

The key is an ulp-analysis of the error terms ϵ_{1} and ϵ_{2} given by:

$$
\begin{array}{|l|l}
\widehat{w}:=\operatorname{RN}(b c) ; \\
\widehat{f}:=\operatorname{RN}(a d-\widehat{w}) ; \quad e:=\operatorname{RN}(\widehat{w}-b c) ; & \\
\widehat{r}:=\operatorname{RN}(\widehat{f}+e) ; & \widehat{f}=\widehat{w}+\epsilon_{1} \\
\widehat{r}=\widehat{f}+e+\epsilon_{2}
\end{array}
$$

- Since e is exactly $\widehat{w}-b c$, we have $\widehat{r}-r=\epsilon_{1}+\epsilon_{2}$.
- Furthermore, we can prove that $\left|\epsilon_{i}\right| \leqslant \frac{\beta}{2} \mathrm{u} \operatorname{lp}(r)$ for $i=1,2$.

Proposition: $|\widehat{r}-r| \leqslant \beta u l p(r) \leqslant 2 \beta u|r|$.

These bounds mean Kahan's algorithm is always highly accurate.

Further analysis

[J., Louvet, Muller'13]

We can do better via a case analysis comparing $\left|\epsilon_{2}\right|$ to $\frac{1}{2} u l p(r)$:

Theorem:

- relative error $|\hat{r}-r| /|r| \leqslant 2 u$;

Further analysis

We can do better via a case analysis comparing $\left|\epsilon_{2}\right|$ to $\frac{1}{2} u l p(r)$:

Theorem:

- relative error $|\widehat{r}-r| /|r| \leqslant 2 u$;
- this bound is asymptotically optimal.

Certificate of optimality

This is an explicit input set parametrized by β and p such that

$$
\frac{\text { error }}{\text { error bound }} \rightarrow 1 \text { as } u \rightarrow 0
$$

Certificate of optimality

This is an explicit input set parametrized by β and p such that

$$
\frac{\text { error }}{\text { error bound }} \rightarrow 1 \text { as } u \rightarrow 0
$$

Example: for Kahan's algorithm for $r=a d-b c$:
$\left.\begin{array}{rl}a & =b=\beta^{p-1}+1 \\ c & =\beta^{p-1}+\frac{\beta}{2} \beta^{p-2} \\ d & =2 \beta^{p-1}+\frac{\beta}{2} \beta^{p-2}\end{array}\right\} \Rightarrow \quad \frac{|\widehat{r}-r| /|r|}{2 u}=\frac{1}{1+\beta^{1-p}}=1-2 u+O\left(u^{2}\right)$.

Certificate of optimality

This is an explicit input set parametrized by β and p such that

$$
\frac{\text { error }}{\text { error bound }} \rightarrow 1 \text { as } u \rightarrow 0
$$

Example: for Kahan's algorithm for $r=a d-b c$:

$$
\left.\begin{array}{l}
a=b=\beta^{p-1}+1 \\
c=\beta^{p-1}+\frac{\beta}{2} \beta^{p-2} \\
d=2 \beta^{p-1} \beta \beta^{p-2}
\end{array}\right\} \Rightarrow \quad \frac{|\widehat{r}-r| /|r|}{2 u}=\frac{1}{1+\beta^{1-p}}=1-2 u+O\left(u^{2}\right)
$$

- Optimality is asymptotic, but often OK in practice: for $\beta=2$ and $p=11$, the above example has relative error $1.999024 \ldots u$.
- The certificate consists of sparse, symbolic floating-point data, which we can handle automatically. [J., Louvet, Muller, Plet]

Context

Floating-point arithmetic

Error properties of arithmetic operations over \mathbb{F}

Some Wilkinson's bounds made simpler and sharper

Analyzing highly accurate kernels

Conclusion

Summary

Floating-point arithmetic is

- specified rigorously by IEEE 754,
- highly structured and much richer than the standard model.

Exploiting this structure leads to

- optimal standard models for basic arithmetic operations,
- simpler and sharper Wilkinson-like bounds,
- proofs of nice behavior of some numerical kernels.

Future directions

Optimal error bounds for complex arithmetic:

- Naive evaluation of $z=(a+i b)(c+i d)$ in floating-point $\Rightarrow \quad|\widehat{z}-z| /|z| \leqslant \sqrt{5} u \quad$ [Brent, Percival, Zimmermann'07]
- Similar results for other schemes [with Kornerup, Louvet, Muller'14]
- For inversion, best constant ≈ 2.7 [with Louvet, Muller, Plet'15]
- Best constants for division and square root?

Future directions

Optimal error bounds for complex arithmetic:

- Naive evaluation of $z=(a+i b)(c+i d)$ in floating-point $\Rightarrow \quad|\widehat{z}-z| /|z| \leqslant \sqrt{5} u \quad$ [Brent, Percival, Zimmermann'07]
- Similar results for other schemes [with Kornerup, Louvet, Muller'14]
- For inversion, best constant ≈ 2.7 [with Louvet, Muller, Plet'15]
- Best constants for division and square root?

Robustness issues

- What if roundings other than to nearest? [Demmel, Nguyen'13], [Boldo, Graillat, Muller'16]; [Ozaki, Ogita, Bünger, Oishi'15]
- How to take underflow and overflow into account?

