
Analyse d'Algorithmes en

Arithmétique à Virgule Flottante

Claude-Pierre Jeannerod

Inria � LIP, ENS de Lyon

2

Context

Starting point:

How do numerical algorithms behave in �nite precision arithmetic?

Typically,

I basic matrix computations: Ax = b, ...

I �oating-point data and arithmetic as speci�ed by IEEE 754.

Ideally, we'd like to guarantee a priori that the computed solution x̂

has some kind of numerical quality:

I the forward error ||x − x̂ || is 'small',

I the backward error ||∆A|| such that (A + ∆A)x̂ = b is 'small'.

3

Context

To get such guarantees, a key tool is backward error analysis:

I developed by Wilkinson in the 1960's,

I identi�es nearby problems solved exactly: x̂ = (A + ∆A)−1b,

I relies on a standard model of �oating-point arithmetic,

I eminently powerful; see e.g. Higham's book:

4

Context

The standard model says that the result r̂ of a single operation

x op y in �oating-point arithmetic satis�es

r̂ = (x op y)× (1 + δ), |δ| 6 u.

I Simple and handy.

I But does not express all the features of IEEE 754.

Our goal: show the bene�ts of exploiting some lower-level features:

1. Optimal bounds for basic operations,

2. Simpler and sharper Wilkinson-style error analysis,

3. Explain why some tiny kernels behave so well.

4

Context

The standard model says that the result r̂ of a single operation

x op y in �oating-point arithmetic satis�es

r̂ = (x op y)× (1 + δ), |δ| 6 u.

I Simple and handy.

I But does not express all the features of IEEE 754.

Our goal: show the bene�ts of exploiting some lower-level features:

1. Optimal bounds for basic operations,

2. Simpler and sharper Wilkinson-style error analysis,

3. Explain why some tiny kernels behave so well.

5

Context

Floating-point arithmetic

Error properties of arithmetic operations over F

Some Wilkinson's bounds made simpler and sharper

Analyzing highly accurate kernels

Conclusion

6

Floating-point data

F := {0}∪
{
±M · βe−p+1 : βp−1 6 M < βp, emin 6 e 6 emax

}
.

I base β,

I precision p,

I exponent range de�ned by emin and emax.

We assume

I emin = −∞ and emax = +∞: unbounded exponent range,

I β is even.

6

Floating-point data

F := {0}∪
{
±M · βe−p+1 : βp−1 6 M < βp, emin 6 e 6 emax

}
.

I base β,

I precision p,

I exponent range de�ned by emin and emax.

We assume

I emin = −∞ and emax = +∞: unbounded exponent range,

I β is even.

7

Floating-point data

I x ∈ F\{0} ⇒ |x | = m · βe , m = (∗. ∗ · · · ∗︸ ︷︷ ︸
p − 1

)β ∈ [1, β).

I Three useful �units�:
I Unit in the �rst place: ufp(x) = βe ,

I Unit in the last place: ulp(x) = βe−p+1,

I Unit roundo�: u = 1
2
β1−p.

I Alternative views, which display the structure of F very well:
I x ∈ ulp(x)Z,
I |x | = (1 + 2ku) ufp(x), k ∈ N.

⇒ F ∩ [1, β) =
{
1, 1 + 2u, 1 + 4u, . . .

}
.

7

Floating-point data

I x ∈ F\{0} ⇒ |x | = m · βe , m = (∗. ∗ · · · ∗︸ ︷︷ ︸
p − 1

)β ∈ [1, β).

I Three useful �units�:
I Unit in the �rst place: ufp(x) = βe ,

I Unit in the last place: ulp(x) = βe−p+1,

I Unit roundo�: u = 1
2
β1−p.

I Alternative views, which display the structure of F very well:
I x ∈ ulp(x)Z,
I |x | = (1 + 2ku) ufp(x), k ∈ N.

⇒ F ∩ [1, β) =
{
1, 1 + 2u, 1 + 4u, . . .

}
.

8

Rounding function

Round-to-nearest function RN : R→ F such that

∀t ∈ R, |RN(t)− t| = min
f ∈F
|f − t|,

with given tie-breaking rule.

I t ∈ F ⇒ RN(t) = t

I RN nondecreasing

I reasonable tie-breaking rule:
I RN(−t) = −RN(t)
I RN(tβe) = RN(t)βe , e ∈ Z

8

Rounding function

Round-to-nearest function RN : R→ F such that

∀t ∈ R, |RN(t)− t| = min
f ∈F
|f − t|,

with given tie-breaking rule.

I t ∈ F ⇒ RN(t) = t

I RN nondecreasing

I reasonable tie-breaking rule:
I RN(−t) = −RN(t)
I RN(tβe) = RN(t)βe , e ∈ Z

9

Error bounds for real numbers

E1(t) :=
|RN(t)− t|
|t|

6
u

1+ u
, E2(t) :=

|RN(t)− t|
|RN(t)|

6 u.

Proof:

I Assume 1 6 t < β, so that

RN(t) ∈ {1, 1 + 2u, 1 + 4u, . . . , β}.

I Then |RN(t)− t| 6 1
2
× 2u = u.

I Dividing by RN(t) > 1 gives directly the bound on E2.

I If t > 1 + u then the bound E1(t) 6 u
1+u

follows.

I Else 1 6 t < 1 + u ⇒ RN(t) = 1 ⇒ E1(t) = t−1
t
< u

1+u
.

Bound u
1+u

: sharp and well known [Dekker'71, Holm'80, Knuth'81-98],

but simpler bound u almost always used in practice.

9

Error bounds for real numbers

E1(t) :=
|RN(t)− t|
|t|

6
u

1+ u
, E2(t) :=

|RN(t)− t|
|RN(t)|

6 u.

Proof:

I Assume 1 6 t < β, so that

RN(t) ∈ {1, 1 + 2u, 1 + 4u, . . . , β}.

I Then |RN(t)− t| 6 1
2
× 2u = u.

I Dividing by RN(t) > 1 gives directly the bound on E2.

I If t > 1 + u then the bound E1(t) 6 u
1+u

follows.

I Else 1 6 t < 1 + u ⇒ RN(t) = 1 ⇒ E1(t) = t−1
t
< u

1+u
.

Bound u
1+u

: sharp and well known [Dekker'71, Holm'80, Knuth'81-98],

but simpler bound u almost always used in practice.

9

Error bounds for real numbers

E1(t) :=
|RN(t)− t|
|t|

6
u

1+ u
, E2(t) :=

|RN(t)− t|
|RN(t)|

6 u.

Proof:

I Assume 1 6 t < β, so that

RN(t) ∈ {1, 1 + 2u, 1 + 4u, . . . , β}.

I Then |RN(t)− t| 6 1
2
× 2u = u.

I Dividing by RN(t) > 1 gives directly the bound on E2.

I If t > 1 + u then the bound E1(t) 6 u
1+u

follows.

I Else 1 6 t < 1 + u ⇒ RN(t) = 1 ⇒ E1(t) = t−1
t
< u

1+u
.

Bound u
1+u

: sharp and well known [Dekker'71, Holm'80, Knuth'81-98],

but simpler bound u almost always used in practice.

9

Error bounds for real numbers

E1(t) :=
|RN(t)− t|
|t|

6
u

1+ u
, E2(t) :=

|RN(t)− t|
|RN(t)|

6 u.

Proof:

I Assume 1 6 t < β, so that

RN(t) ∈ {1, 1 + 2u, 1 + 4u, . . . , β}.

I Then |RN(t)− t| 6 1
2
× 2u = u.

I Dividing by RN(t) > 1 gives directly the bound on E2.

I If t > 1 + u then the bound E1(t) 6 u
1+u

follows.

I Else 1 6 t < 1 + u ⇒ RN(t) = 1 ⇒ E1(t) = t−1
t
< u

1+u
.

Bound u
1+u

: sharp and well known [Dekker'71, Holm'80, Knuth'81-98],

but simpler bound u almost always used in practice.

9

Error bounds for real numbers

E1(t) :=
|RN(t)− t|
|t|

6
u

1+ u
, E2(t) :=

|RN(t)− t|
|RN(t)|

6 u.

Proof:

I Assume 1 6 t < β, so that

RN(t) ∈ {1, 1 + 2u, 1 + 4u, . . . , β}.

I Then |RN(t)− t| 6 1
2
× 2u = u.

I Dividing by RN(t) > 1 gives directly the bound on E2.

I If t > 1 + u then the bound E1(t) 6 u
1+u

follows.

I Else 1 6 t < 1 + u ⇒ RN(t) = 1 ⇒ E1(t) = t−1
t
< u

1+u
.

Bound u
1+u

: sharp and well known [Dekker'71, Holm'80, Knuth'81-98],

but simpler bound u almost always used in practice.

9

Error bounds for real numbers

E1(t) :=
|RN(t)− t|
|t|

6
u

1+ u
, E2(t) :=

|RN(t)− t|
|RN(t)|

6 u.

Proof:

I Assume 1 6 t < β, so that

RN(t) ∈ {1, 1 + 2u, 1 + 4u, . . . , β}.

I Then |RN(t)− t| 6 1
2
× 2u = u.

I Dividing by RN(t) > 1 gives directly the bound on E2.

I If t > 1 + u then the bound E1(t) 6 u
1+u

follows.

I Else 1 6 t < 1 + u ⇒ RN(t) = 1 ⇒ E1(t) = t−1
t
< u

1+u
.

Bound u
1+u

: sharp and well known [Dekker'71, Holm'80, Knuth'81-98],

but simpler bound u almost always used in practice.

9

Error bounds for real numbers

E1(t) :=
|RN(t)− t|
|t|

6
u

1+ u
, E2(t) :=

|RN(t)− t|
|RN(t)|

6 u.

Proof:

I Assume 1 6 t < β, so that

RN(t) ∈ {1, 1 + 2u, 1 + 4u, . . . , β}.

I Then |RN(t)− t| 6 1
2
× 2u = u.

I Dividing by RN(t) > 1 gives directly the bound on E2.

I If t > 1 + u then the bound E1(t) 6 u
1+u

follows.

I Else 1 6 t < 1 + u ⇒ RN(t) = 1 ⇒ E1(t) = t−1
t
< u

1+u
.

Bound u
1+u

: sharp and well known [Dekker'71, Holm'80, Knuth'81-98],

but simpler bound u almost always used in practice.

10

Correct rounding

This is the result of the composition of two functions: basic

operations performed exactly, and exact result then rounded:

x , y ∈ F, op = ±,×,÷ ⇒ return r̂ := RN(x op y).

op extends to square root and FMA (fused multiply add: xy + z).

I The error bounds on E1 and E2 yield two standard models:

r̂ = (x op y)× (1 + δ1), |δ1| 6 u
1+u

=: u1,

= (x op y)× 1

1 + δ2
, |δ2| 6 u.

10

Correct rounding

This is the result of the composition of two functions: basic

operations performed exactly, and exact result then rounded:

x , y ∈ F, op = ±,×,÷ ⇒ return r̂ := RN(x op y).

op extends to square root and FMA (fused multiply add: xy + z).

I The error bounds on E1 and E2 yield two standard models:

r̂ = (x op y)× (1 + δ1), |δ1| 6 u
1+u

=: u1,

= (x op y)× 1

1 + δ2
, |δ2| 6 u.

11

Example

Let r = x+y
2

be evaluated naively as r̂ = RN
(
RN(x+y)

2

)
.

I High relative accuracy is ensured:

r̂ =
RN(x + y)

2
(1 + δ1), |δ1| 6 u1,

=
x + y

2
(1 + δ1)(1 + δ′1), |δ′1| 6 u1,

=: r (1 + ε), |ε| 6 2u.

I We'd also like to have min(x , y) 6 r̂ 6 max(x , y) ...

11

Example

Let r = x+y
2

be evaluated naively as r̂ = RN
(
RN(x+y)

2

)
.

I High relative accuracy is ensured:

r̂ =
RN(x + y)

2
(1 + δ1), |δ1| 6 u1,

=
x + y

2
(1 + δ1)(1 + δ′1), |δ′1| 6 u1,

=: r (1 + ε), |ε| 6 2u.

I We'd also like to have min(x , y) 6 r̂ 6 max(x , y) ...

11

Example

Let r = x+y
2

be evaluated naively as r̂ = RN
(
RN(x+y)

2

)
.

I High relative accuracy is ensured:

r̂ =
RN(x + y)

2
(1 + δ1), |δ1| 6 u1,

=
x + y

2
(1 + δ1)(1 + δ′1), |δ′1| 6 u1,

=: r (1 + ε), |ε| 6 2u.

I We'd also like to have min(x , y) 6 r̂ 6 max(x , y) ...

12

Example

7 Not always true:

β = 10, p = 3 ⇒ RN

(
RN
(
5.01 + 5.03

)
2

)
= RN

(
10

2

)
= 5.

3 True in base two or if sign(x) 6= sign(y).

Proof for base two:

I r̂ := RN
(
RN(x+y)

2

)
= RN

(
x+y
2

)
.

I x 6 x+y
2

6 y ⇒ RN(x) 6 RN
(
x+y
2

)
6 RN(y)

⇒ x 6 r̂ 6 y .

↪→ Repair other cases using r = x + y−x
2

. [Sterbenz'74, Boldo'15]

12

Example

7 Not always true:

β = 10, p = 3 ⇒ RN

(
RN
(
5.01 + 5.03

)
2

)
= RN

(
10

2

)
= 5.

3 True in base two or if sign(x) 6= sign(y).

Proof for base two:

I r̂ := RN
(
RN(x+y)

2

)
= RN

(
x+y
2

)
.

I x 6 x+y
2

6 y ⇒ RN(x) 6 RN
(
x+y
2

)
6 RN(y)

⇒ x 6 r̂ 6 y .

↪→ Repair other cases using r = x + y−x
2

. [Sterbenz'74, Boldo'15]

12

Example

7 Not always true:

β = 10, p = 3 ⇒ RN

(
RN
(
5.01 + 5.03

)
2

)
= RN

(
10

2

)
= 5.

3 True in base two or if sign(x) 6= sign(y).

Proof for base two:

I r̂ := RN
(
RN(x+y)

2

)
= RN

(
x+y
2

)
.

I x 6 x+y
2

6 y ⇒ RN(x) 6 RN
(
x+y
2

)
6 RN(y)

⇒ x 6 r̂ 6 y .

↪→ Repair other cases using r = x + y−x
2

. [Sterbenz'74, Boldo'15]

12

Example

7 Not always true:

β = 10, p = 3 ⇒ RN

(
RN
(
5.01 + 5.03

)
2

)
= RN

(
10

2

)
= 5.

3 True in base two or if sign(x) 6= sign(y).

Proof for base two:

I r̂ := RN
(
RN(x+y)

2

)
= RN

(
x+y
2

)
.

I x 6 x+y
2

6 y ⇒ RN(x) 6 RN
(
x+y
2

)
6 RN(y)

⇒ x 6 r̂ 6 y .

↪→ Repair other cases using r = x + y−x
2

. [Sterbenz'74, Boldo'15]

13

Context

Floating-point arithmetic

Error properties of arithmetic operations over F

Some Wilkinson's bounds made simpler and sharper

Analyzing highly accurate kernels

Conclusion

14

Conditions for exact subtraction

Sterbenz' lemma: [Sterbenz'74]

x , y ∈ F,
y

2
6 x 6 2y ⇒ x − y ∈ F.

I Valid for any base β.

I Applications: Cody and Waite's range reduction, Kahan's

accurate algorithms (discriminants, triangle area), ...

I Proof: [Hauser'96]

I assume 0 < y 6 x 6 2y .

I ulp(y) 6 ulp(x) ⇒ x − y ∈ βeZ with βe = ulp(y).

I x−y
βe is an integer such that 0 6 x−y

βe 6 y
ulp(y) < βp.

14

Conditions for exact subtraction

Sterbenz' lemma: [Sterbenz'74]

x , y ∈ F,
y

2
6 x 6 2y ⇒ x − y ∈ F.

I Valid for any base β.

I Applications: Cody and Waite's range reduction, Kahan's

accurate algorithms (discriminants, triangle area), ...

I Proof: [Hauser'96]

I assume 0 < y 6 x 6 2y .

I ulp(y) 6 ulp(x) ⇒ x − y ∈ βeZ with βe = ulp(y).

I x−y
βe is an integer such that 0 6 x−y

βe 6 y
ulp(y) < βp.

14

Conditions for exact subtraction

Sterbenz' lemma: [Sterbenz'74]

x , y ∈ F,
y

2
6 x 6 2y ⇒ x − y ∈ F.

I Valid for any base β.

I Applications: Cody and Waite's range reduction, Kahan's

accurate algorithms (discriminants, triangle area), ...

I Proof: [Hauser'96]

I assume 0 < y 6 x 6 2y .

I ulp(y) 6 ulp(x) ⇒ x − y ∈ βeZ with βe = ulp(y).

I x−y
βe is an integer such that 0 6 x−y

βe 6 y
ulp(y) < βp.

15

Representable error terms

Addition and multiplication:

x , y ∈ F, op ∈ {+,×} ⇒ x op y − RN(x op y) ∈ F.

Division and square root:

x − y RN(x/y) ∈ F, x − RN
(√

x
)2 ∈ F.

I Noted quite early. [Dekker'71, Pichat'76, Bohlender et al.'91]

I RN required only for ADD and SQRT. [Boldo & Daumas'03]

FMA: its error is the sum of two �oats. [Boldo & Muller'11]

16

Error-free transformations (EFT)

Floating-point algorithms for computing such error terms exactly:

I x + y − RN(x + y) in 6 additions [Møller'65, Knuth] and not less

[Kornerup, Lefèvre, Louvet, Muller'12]

I xy − RN(xy) can be obtained
I in 17 + and x [Dekker'71, Boldo'06]
I in only 2 ops if an FMA is available:

ẑ := RN(xy) ⇒ xy − ẑ = FMA(x , y ,−ẑ).

I Similar FMA-based EFT for DIV, SQRT ... and FMA.

EFT are key for extended precision algorithms: error compensation

[Kahan'65, ..., Higham'96, Ogita, Rump, Oishi'04+, Graillat, Langlois,

Louvet'05+, ...], �oating-point expansions [Priest'91, Shewchuk'97,

Joldes, Muller, Popescu'14+].

16

Error-free transformations (EFT)

Floating-point algorithms for computing such error terms exactly:

I x + y − RN(x + y) in 6 additions [Møller'65, Knuth] and not less

[Kornerup, Lefèvre, Louvet, Muller'12]

I xy − RN(xy) can be obtained
I in 17 + and x [Dekker'71, Boldo'06]
I in only 2 ops if an FMA is available:

ẑ := RN(xy) ⇒ xy − ẑ = FMA(x , y ,−ẑ).

I Similar FMA-based EFT for DIV, SQRT ... and FMA.

EFT are key for extended precision algorithms: error compensation

[Kahan'65, ..., Higham'96, Ogita, Rump, Oishi'04+, Graillat, Langlois,

Louvet'05+, ...], �oating-point expansions [Priest'91, Shewchuk'97,

Joldes, Muller, Popescu'14+].

16

Error-free transformations (EFT)

Floating-point algorithms for computing such error terms exactly:

I x + y − RN(x + y) in 6 additions [Møller'65, Knuth] and not less

[Kornerup, Lefèvre, Louvet, Muller'12]

I xy − RN(xy) can be obtained
I in 17 + and x [Dekker'71, Boldo'06]
I in only 2 ops if an FMA is available:

ẑ := RN(xy) ⇒ xy − ẑ = FMA(x , y ,−ẑ).

I Similar FMA-based EFT for DIV, SQRT ... and FMA.

EFT are key for extended precision algorithms: error compensation

[Kahan'65, ..., Higham'96, Ogita, Rump, Oishi'04+, Graillat, Langlois,

Louvet'05+, ...], �oating-point expansions [Priest'91, Shewchuk'97,

Joldes, Muller, Popescu'14+].

17

Optimal relative error bounds

When t can be any real number, E1(t) 6 u
1+u

and E2(t) 6 u are

best possible:

t := 1 + u ⇒ RN(t) is 1 or 1 + 2u ⇒ |t − RN(t)| = u.

Hence

E1(t) =
u

1 + u

and, if rounding ties �to even�, RN(t) = 1 and thus

E2(t) = u.

These are examples of optimal bounds:

I valid for all (t,RN) with t of a certain type;

I attained for some (t,RN) with t parametrized by β and p.

17

Optimal relative error bounds

When t can be any real number, E1(t) 6 u
1+u

and E2(t) 6 u are

best possible:

t := 1 + u ⇒ RN(t) is 1 or 1 + 2u ⇒ |t − RN(t)| = u.

Hence

E1(t) =
u

1 + u

and, if rounding ties �to even�, RN(t) = 1 and thus

E2(t) = u.

These are examples of optimal bounds:

I valid for all (t,RN) with t of a certain type;

I attained for some (t,RN) with t parametrized by β and p.

17

Optimal relative error bounds

When t can be any real number, E1(t) 6 u
1+u

and E2(t) 6 u are

best possible:

t := 1 + u ⇒ RN(t) is 1 or 1 + 2u ⇒ |t − RN(t)| = u.

Hence

E1(t) =
u

1 + u

and, if rounding ties �to even�, RN(t) = 1 and thus

E2(t) = u.

These are examples of optimal bounds:

I valid for all (t,RN) with t of a certain type;

I attained for some (t,RN) with t parametrized by β and p.

17

Optimal relative error bounds

When t can be any real number, E1(t) 6 u
1+u

and E2(t) 6 u are

best possible:

t := 1 + u ⇒ RN(t) is 1 or 1 + 2u ⇒ |t − RN(t)| = u.

Hence

E1(t) =
u

1 + u

and, if rounding ties �to even�, RN(t) = 1 and thus

E2(t) = u.

These are examples of optimal bounds:

I valid for all (t,RN) with t of a certain type;

I attained for some (t,RN) with t parametrized by β and p.

18

Can we do better when t = x op y and x , y ∈ F?
This depends on op and, sometimes, on β and p. [J. & Rump'14]

t optimal bound on E1(t) optimal bound on E2(t)

x ± y u
1+u

u

xy u
1+u

(?) u (?)

x/y


u

1+u
if β > 2,

u − 2u2 if β = 2


u if β > 2,

u−2u2

1+u−2u2
if β = 2

√
x 1− 1√

1+2u

√
1+ 2u − 1

(?) i� β > 2 or 2p + 1 is not a Fermat prime.

−→ Two standard models for each arithmetic operation.
−→ Application: sharper bounds and/or much simpler proofs.

18

Can we do better when t = x op y and x , y ∈ F?
This depends on op and, sometimes, on β and p. [J. & Rump'14]

t optimal bound on E1(t) optimal bound on E2(t)

x ± y u
1+u

u

xy u
1+u

(?) u (?)

x/y


u

1+u
if β > 2,

u − 2u2 if β = 2


u if β > 2,

u−2u2

1+u−2u2
if β = 2

√
x 1− 1√

1+2u

√
1+ 2u − 1

(?) i� β > 2 or 2p + 1 is not a Fermat prime.

−→ Two standard models for each arithmetic operation.
−→ Application: sharper bounds and/or much simpler proofs.

19

Context

Floating-point arithmetic

Error properties of arithmetic operations over F

Some Wilkinson's bounds made simpler and sharper

Analyzing highly accurate kernels

Conclusion

20

Floating-point summation

Given x1, . . . , xn ∈ F, evaluate their sum in any order.

Classical analysis [Wilkinson'60]:

I Apply the standard model n − 1 times.

I Deduce that the computed value ŝ ∈ F satis�es∣∣∣ŝ − n∑
i=1

xi

∣∣∣ 6 α

n∑
i=1

|xi |, α = (1 + u)n−1 − 1.

3 Easy to derive, valid for any order, asymptotically optimal:
error

error bound → 1 as u → 0.

7 But α = (n − 1)u + O(u2), which hides a constant.

So, classically bounded as

α 6 γn−1, γk =
ku

1− ku
, ku < 1. [Higham'96]

20

Floating-point summation

Given x1, . . . , xn ∈ F, evaluate their sum in any order.

Classical analysis [Wilkinson'60]:

I Apply the standard model n − 1 times.

I Deduce that the computed value ŝ ∈ F satis�es∣∣∣ŝ − n∑
i=1

xi

∣∣∣ 6 α

n∑
i=1

|xi |, α = (1 + u)n−1 − 1.

3 Easy to derive, valid for any order, asymptotically optimal:
error

error bound → 1 as u → 0.

7 But α = (n − 1)u + O(u2), which hides a constant.

So, classically bounded as

α 6 γn−1, γk =
ku

1− ku
, ku < 1. [Higham'96]

20

Floating-point summation

Given x1, . . . , xn ∈ F, evaluate their sum in any order.

Classical analysis [Wilkinson'60]:

I Apply the standard model n − 1 times.

I Deduce that the computed value ŝ ∈ F satis�es∣∣∣ŝ − n∑
i=1

xi

∣∣∣ 6 α

n∑
i=1

|xi |, α = (1 + u)n−1 − 1.

3 Easy to derive, valid for any order, asymptotically optimal:
error

error bound → 1 as u → 0.

7 But α = (n − 1)u + O(u2), which hides a constant.

So, classically bounded as

α 6 γn−1, γk =
ku

1− ku
, ku < 1. [Higham'96]

21

A simpler, O(u2)-free bound

Theorem [Rump'12]

For recursive summation, one can take α = (n − 1)u.

To prove this,

7 don't use just the re�ned standard model, since

(1 + u
1+u

)n−1 − 1 6 (n − 1)u

only for n 6 4.

21

A simpler, O(u2)-free bound

Theorem [Rump'12]

For recursive summation, one can take α = (n − 1)u.

To prove this,

7 don't use just the re�ned standard model, since

(1 + u
1+u

)n−1 − 1 6 (n − 1)u

only for n 6 4.

22

A simpler, O(u2)-free bound

Theorem [Rump'12]

For recursive summation, one can take α = (n − 1)u.

To prove this,

7 it might be di�cult to use the usual backward error analysis:
I ŝ =

∑
i xi (1 + θi),

I |̂s −
∑

i xi | 6 maxi |θi | ·
∑

i |xi |,

since for

1 + u − u + u − u + · · ·

and RN with ties 'to away'

max
i
|θi | = (1 + u

1+u
)n−1 − 1

= (n − 1)u + O(u2).

22

A simpler, O(u2)-free bound

Theorem [Rump'12]

For recursive summation, one can take α = (n − 1)u.

To prove this,

7 it might be di�cult to use the usual backward error analysis:
I ŝ =

∑
i xi (1 + θi),

I |̂s −
∑

i xi | 6 maxi |θi | ·
∑

i |xi |,

since for

1 + u − u + u − u + · · ·

and RN with ties 'to away'

max
i
|θi | = (1 + u

1+u
)n−1 − 1

= (n − 1)u + O(u2).

23

A simpler, O(u2)-free bound

Theorem [Rump'12]

For recursive summation, one can take α = (n − 1)u.

To prove this,

I Proceed forward;

I Combine

|RN(x + y)− (x + y)| 6 u
1+u
|x + y |, (1)

with the lower-level property

|RN(x + y)− (x + y)| 6 |f − (x + y)|, ∀ f ∈ F,
6 min{|x |, |y |}; (2)

I Conclude by induction on n with a clever case-distinction

comparing |xn| to u ·
∑

i<n |xi |, and using either (1) or (2).

23

A simpler, O(u2)-free bound

Theorem [Rump'12]

For recursive summation, one can take α = (n − 1)u.

To prove this,

I Proceed forward;

I Combine

|RN(x + y)− (x + y)| 6 u
1+u
|x + y |, (1)

with the lower-level property

|RN(x + y)− (x + y)| 6 |f − (x + y)|, ∀ f ∈ F,
6 min{|x |, |y |}; (2)

I Conclude by induction on n with a clever case-distinction

comparing |xn| to u ·
∑

i<n |xi |, and using either (1) or (2).

23

A simpler, O(u2)-free bound

Theorem [Rump'12]

For recursive summation, one can take α = (n − 1)u.

To prove this,

I Proceed forward;

I Combine

|RN(x + y)− (x + y)| 6 u
1+u
|x + y |, (1)

with the lower-level property

|RN(x + y)− (x + y)| 6 |f − (x + y)|, ∀ f ∈ F,
6 min{|x |, |y |}; (2)

I Conclude by induction on n with a clever case-distinction

comparing |xn| to u ·
∑

i<n |xi |, and using either (1) or (2).

24

Wilkinson's bounds revisited

Problem Classical α New α Ref.

summation (n − 1)u + O(u2) (n − 1)u [1]

dot prod., mat. mul. nu + O(u2) nu [1]

Euclidean norm (n
2
+ 1)u + O(u2) (n

2
+ 1)u [2]

Tx = b, A = LU nu + O(u2) nu [2]

A = RTR (n + 1)u + O(u2) (n + 1)u [2]

xn (recursive, β = 2) (n − 1)u + O(u2) (n − 1)u (?) [3]

product x1x2 · · · xn (n − 1)u + O(u2) (n − 1)u (?) [4]

poly. eval. (Horner) 2nu + O(u2) 2nu (?) [4]

(?) if n < O(1/
√
u)

[1]: with Rump'13; [2]: with Rump'14; [3]: Graillat, Lefèvre, Muller'14;
[4]: with Bünger and Rump'14.

24

Wilkinson's bounds revisited

Problem Classical α New α Ref.

summation (n − 1)u + O(u2) (n − 1)u [1]

dot prod., mat. mul. nu + O(u2) nu [1]

Euclidean norm (n
2
+ 1)u + O(u2) (n

2
+ 1)u [2]

Tx = b, A = LU nu + O(u2) nu [2]

A = RTR (n + 1)u + O(u2) (n + 1)u [2]

xn (recursive, β = 2) (n − 1)u + O(u2) (n − 1)u (?) [3]

product x1x2 · · · xn (n − 1)u + O(u2) (n − 1)u (?) [4]

poly. eval. (Horner) 2nu + O(u2) 2nu (?) [4]

(?) if n < O(1/
√
u)

[1]: with Rump'13; [2]: with Rump'14; [3]: Graillat, Lefèvre, Muller'14;
[4]: with Bünger and Rump'14.

25

Remarks

I Except for Horner's rule, these bounds hold for any ordering.

I Further re�nements are possible:
I using u1 := u

1+u
instead of u;

I assuming recursive summation and 20nu < 1. [Mascarenhas'16]

I Key ingredients for analyzing Horner's rule in degree n:
I see it as (×)(+×) · · · (+×)(+);

I bound the relative error of RN
(
RN(x + y)z

)
by

(1 + u1)(1 + uϕ)− 1, uϕ ≈
u

1 +
√
u

;

I show that α 6 (1 + u1)n+1(1 + uϕ)n−1 − 16 2nu.

25

Remarks

I Except for Horner's rule, these bounds hold for any ordering.

I Further re�nements are possible:
I using u1 := u

1+u
instead of u;

I assuming recursive summation and 20nu < 1. [Mascarenhas'16]

I Key ingredients for analyzing Horner's rule in degree n:
I see it as (×)(+×) · · · (+×)(+);

I bound the relative error of RN
(
RN(x + y)z

)
by

(1 + u1)(1 + uϕ)− 1, uϕ ≈
u

1 +
√
u

;

I show that α 6 (1 + u1)n+1(1 + uϕ)n−1 − 16 2nu.

26

Context

Floating-point arithmetic

Error properties of arithmetic operations over F

Some Wilkinson's bounds made simpler and sharper

Analyzing highly accurate kernels

Conclusion

27

Kahan's algorithm for ad − bc

Kahan's algorithm uses the FMA to evaluate det

[
a b

c d

]
= ad − bc :

ŵ := RN(bc);

f̂ := RN(ad − ŵ); e := RN(ŵ − bc);

r̂ := RN(f̂ + e);

I The operation ad − bc is not in IEEE 754, but very common:
I complex arithmetic,
I discriminant of a quadratic equation,
I robust orientation predicates using tests like 'ad − bc > ε?'

I If evaluated naively, ad − bc leads to highly inaccurate results:

|f̂ − r |
|r |

can be of the order of u−1 � 1.

27

Kahan's algorithm for ad − bc

Kahan's algorithm uses the FMA to evaluate det

[
a b

c d

]
= ad − bc :

ŵ := RN(bc);

f̂ := RN(ad − ŵ); e := RN(ŵ − bc);

r̂ := RN(f̂ + e);

I The operation ad − bc is not in IEEE 754, but very common:
I complex arithmetic,
I discriminant of a quadratic equation,
I robust orientation predicates using tests like 'ad − bc > ε?'

I If evaluated naively, ad − bc leads to highly inaccurate results:

|f̂ − r |
|r |

can be of the order of u−1 � 1.

28

Kahan's algorithm for ad − bc

I Analysis in the standard model [Higham'96]:

|̂r − r |
|r |

6 2u
(
1 + u|bc|

2|r |

)
.

⇒ high relative accuracy as long as u|bc| 6� 2|r |.

I When u|bc| � 2|r |, the error bound can be > 1 and does not

even allow to conclude that sign(r̂) = sign(r).

In fact, Kahan's algorithm is always highly accurate:

7 the standard model alone fails to predict this;

7 misinterpreting bounds ⇒ dismissing good algorithms.

28

Kahan's algorithm for ad − bc

I Analysis in the standard model [Higham'96]:

|̂r − r |
|r |

6 2u
(
1 + u|bc|

2|r |

)
.

⇒ high relative accuracy as long as u|bc| 6� 2|r |.

I When u|bc| � 2|r |, the error bound can be > 1 and does not

even allow to conclude that sign(r̂) = sign(r).

In fact, Kahan's algorithm is always highly accurate:

7 the standard model alone fails to predict this;

7 misinterpreting bounds ⇒ dismissing good algorithms.

28

Kahan's algorithm for ad − bc

I Analysis in the standard model [Higham'96]:

|̂r − r |
|r |

6 2u
(
1 + u|bc|

2|r |

)
.

⇒ high relative accuracy as long as u|bc| 6� 2|r |.

I When u|bc| � 2|r |, the error bound can be > 1 and does not

even allow to conclude that sign(r̂) = sign(r).

In fact, Kahan's algorithm is always highly accurate:

7 the standard model alone fails to predict this;

7 misinterpreting bounds ⇒ dismissing good algorithms.

29

Further analysis [J., Louvet, Muller'13]

The key is an ulp-analysis of the error terms ε1 and ε2 given by:

ŵ := RN(bc);

f̂ := RN(ad − ŵ); e := RN(ŵ − bc);

r̂ := RN(f̂ + e);

f̂ = ad − ŵ + ε1

r̂ = f̂ + e + ε2

I Since e is exactly ŵ − bc , we have r̂ − r = ε1 + ε2.

I Furthermore, we can prove that |εi | 6 β
2
ulp(r) for i = 1, 2.

Proposition: |̂r − r | 6 β ulp(r) 6 2βu |r |.

These bounds mean Kahan's algorithm is always highly accurate.

29

Further analysis [J., Louvet, Muller'13]

The key is an ulp-analysis of the error terms ε1 and ε2 given by:

ŵ := RN(bc);

f̂ := RN(ad − ŵ); e := RN(ŵ − bc);

r̂ := RN(f̂ + e);

f̂ = ad − ŵ + ε1

r̂ = f̂ + e + ε2

I Since e is exactly ŵ − bc , we have r̂ − r = ε1 + ε2.

I Furthermore, we can prove that |εi | 6 β
2
ulp(r) for i = 1, 2.

Proposition: |̂r − r | 6 β ulp(r) 6 2βu |r |.

These bounds mean Kahan's algorithm is always highly accurate.

30

Further analysis [J., Louvet, Muller'13]

We can do better via a case analysis comparing |ε2| to 1
2
ulp(r):

Theorem:
I relative error |̂r − r |/|r | 6 2u;

I this bound is asymptotically optimal.

30

Further analysis [J., Louvet, Muller'13]

We can do better via a case analysis comparing |ε2| to 1
2
ulp(r):

Theorem:
I relative error |̂r − r |/|r | 6 2u;

I this bound is asymptotically optimal.

31

Certi�cate of optimality

This is an explicit input set parametrized by β and p such that

error

error bound
→ 1 as u → 0.

Example: for Kahan's algorithm for r = ad − bc :

a = b = βp−1 + 1

c = βp−1 + β
2
βp−2

d = 2βp−1 + β
2
βp−2

 ⇒ |̂r − r |/|r |
2u

=
1

1 + β1−p
= 1− 2u + O(u2).

I Optimality is asymptotic, but often OK in practice: for β = 2

and p = 11, the above example has relative error 1.999024...u.

I The certi�cate consists of sparse, symbolic �oating-point data,

which we can handle automatically. [J., Louvet, Muller, Plet]

31

Certi�cate of optimality

This is an explicit input set parametrized by β and p such that

error

error bound
→ 1 as u → 0.

Example: for Kahan's algorithm for r = ad − bc :

a = b = βp−1 + 1

c = βp−1 + β
2
βp−2

d = 2βp−1 + β
2
βp−2

 ⇒ |̂r − r |/|r |
2u

=
1

1 + β1−p
= 1− 2u + O(u2).

I Optimality is asymptotic, but often OK in practice: for β = 2

and p = 11, the above example has relative error 1.999024...u.

I The certi�cate consists of sparse, symbolic �oating-point data,

which we can handle automatically. [J., Louvet, Muller, Plet]

31

Certi�cate of optimality

This is an explicit input set parametrized by β and p such that

error

error bound
→ 1 as u → 0.

Example: for Kahan's algorithm for r = ad − bc :

a = b = βp−1 + 1

c = βp−1 + β
2
βp−2

d = 2βp−1 + β
2
βp−2

 ⇒ |̂r − r |/|r |
2u

=
1

1 + β1−p
= 1− 2u + O(u2).

I Optimality is asymptotic, but often OK in practice: for β = 2

and p = 11, the above example has relative error 1.999024...u.

I The certi�cate consists of sparse, symbolic �oating-point data,

which we can handle automatically. [J., Louvet, Muller, Plet]

32

Context

Floating-point arithmetic

Error properties of arithmetic operations over F

Some Wilkinson's bounds made simpler and sharper

Analyzing highly accurate kernels

Conclusion

33

Summary

Floating-point arithmetic is

I speci�ed rigorously by IEEE 754,

I highly structured and much richer than the standard model.

Exploiting this structure leads to

I optimal standard models for basic arithmetic operations,

I simpler and sharper Wilkinson-like bounds,

I proofs of nice behavior of some numerical kernels.

34

Future directions

Optimal error bounds for complex arithmetic:

I Naive evaluation of z = (a + ib)(c + id) in �oating-point

⇒ |ẑ − z |/|z | 6
√
5 u [Brent, Percival, Zimmermann'07]

I Similar results for other schemes [with Kornerup, Louvet,

Muller'14]

I For inversion, best constant ≈ 2.7 [with Louvet, Muller, Plet'15]

I Best constants for division and square root?

Robustness issues

I What if roundings other than to nearest? [Demmel, Nguyen'13],

[Boldo, Graillat, Muller'16]; [Ozaki, Ogita, Bünger, Oishi'15]

I How to take under�ow and over�ow into account?

34

Future directions

Optimal error bounds for complex arithmetic:

I Naive evaluation of z = (a + ib)(c + id) in �oating-point

⇒ |ẑ − z |/|z | 6
√
5 u [Brent, Percival, Zimmermann'07]

I Similar results for other schemes [with Kornerup, Louvet,

Muller'14]

I For inversion, best constant ≈ 2.7 [with Louvet, Muller, Plet'15]

I Best constants for division and square root?

Robustness issues

I What if roundings other than to nearest? [Demmel, Nguyen'13],

[Boldo, Graillat, Muller'16]; [Ozaki, Ogita, Bünger, Oishi'15]

I How to take under�ow and over�ow into account?

	Context
	Floating-point arithmetic
	Error properties of arithmetic operations over F
	Some Wilkinson's bounds made simpler and sharper
	Analyzing highly accurate kernels
	Conclusion

