Analyse d’Algorithmes en
Arithmétique a Virgule Flottante

Claude-Pierre Jeannerod

Inria = LIP, ENS de Lyon

UNIV=RsITE D= Lyon

5 ey oLn?O ==
12577 > @ ens DE tvON

Context

Starting point:

How do numerical algorithms behave in finite precision arithmetic?

Typically,

» basic matrix computations: Ax = b, ...

» floating-point data and arithmetic as specified by IEEE 754.

Ideally, we'd like to guarantee a priori that the computed solution x
has some kind of numerical quality:

> the forward error |x — x| is 'small’,
» the backward error |AA| such that (A+ AA)x = b is 'small’.

Context

To get such guarantees, a key tool is backward error analysis:

» developed by Wilkinson in the 1960’s,

» identifies nearby problems solved exactly: X = (A + AA)~!b,
> relies on a standard model of floating-point arithmetic,

» eminently powerful; see e.g. Higham's book:

Algarithms
0 Eomon

Context

The standard model says that the result 7 of a single operation
xopy in floating-point arithmetic satisfies

r=(xopy)x(1+9d), [0 <u.

» Simple and handy.
» But does not express all the features of IEEE 754.

Context

The standard model says that the result 7 of a single operation
xopy in floating-point arithmetic satisfies

r=(xopy)x(1+9d), [0 <u.

» Simple and handy.
» But does not express all the features of IEEE 754.

Our goal: show the benefits of exploiting some lower-level features:
1. Optimal bounds for basic operations,
2. Simpler and sharper Wilkinson-style error analysis,

3. Explain why some tiny kernels behave so well.

Floating-point arithmetic

Floating-point data

F:= {O}U{i M. 3e P 3P M < 8P, en < €< emax}.

> base (3,
> precision p,
» exponent range defined by e, and e,...

Floating-point data

F:= {O}U{i M. 3e P 3P M < 8P, en < €< emax}.

> base (3,
> precision p,
» exponent range defined by e, and e,...

We assume
> €nin = —00 and €. = +00: unbounded exponent range,

> [is even.

Floating-point data

> XEF\{O} = ‘X|:m'ﬁe7 m:(***,)ﬁe[lvﬁ)

p—1

» Three useful “units™
» Unit in the first place: ufp(x) = g€,
» Unit in the last place: ulp(x) = ge=—P+1,
> Unit roundoff: u=181-F.

Floating-point data

> x€F\{0} = |xl=m-5°, m=(rng--5)s€[Lh).

p—1

» Three useful “units™
» Unit in the first place: ufp(x) = g€,
» Unit in the last place: ulp(x) = ge=—P+1,
> Unit roundoff: u=181-F.

» Alternative views, which display the structure of T very well:
» x € ulp(x)Z,
» x| = (1+2ku)ufp(x), keN.

- Fﬂ[l,ﬁ):{1,1—1—2u,1+4u,...}.

Rounding function

Round-to-nearest function RN : R — T such that

vVt € R, IRN(t) — t| = min |f — ¢],
feF

with given tie-breaking rule.

REAL NUMBERS

0
|

| | T O A I O A |

FLOATING-POINT
NUMBERS

Rounding function

Round-to-nearest function RN : R — T such that

vVt € R, IRN(t) — t| = min |f — ¢],
feF

with given tie-breaking rule.

REAL NUMBERS

0
|

» teF = RN(t)=t

» RN nondecreasing

v OV iimTyY e » reasonable tie-breaking rule:
| [R N A I > RN(_t):—RN(t)
FLOATING-POINT » RN(t5¢) = RN(t)p¢, ecZ

Error bounds for real numbers

_ RN(t) —¢t] 5 . IRN(E) — ¢

ZIOK It Sty o(t) = IRN(t)|

Error bounds for real numbers

El(t) b

It S1+u o(t) = IRN(2)|

Proof:

» Assume 1 < t < (3, so that

RN(t) € {1,1+2u,1+4u,...,8}.

_ RN(t) —¢t] _ IRN(t) —]

~

Error bounds for real numbers

ZIOK it S l+u o(t) = IRN(2)]

Proof:

» Assume 1 < t < (3, so that

RN(t) € {1,1+2u,1+4u,...,8}.

» Then |RN(t) —t| < i x 2u=u.

_ RN(t) —¢t] _ IRN(t) —]

~

Error bounds for real numbers

El(t) b

It S1+40 o(t) = IRN(2)|

Proof:

» Assume 1 < t < (3, so that

RN(t) € {1,1+2u,1+4u,...,8}.

> Then |[RN(t) — ¢
> Dividing by RN(t)

<3 x2u=u.
> 1 gives directly the bound on E;.

_ IRN(#) —¢] _w _ IRN(t) —]

~

Error bounds for real numbers

El(t) b

It S1+40 o(t) = IRN(2)|

Proof:

» Assume 1 < t < (3, so that
RN(t) € {1,1+2u,1+4u,...,8}.
> Then |[RN(t) — ¢

> Dividing by RN(t)

> If t > 1+ u then the bound Ei(t) < e follows.

<3 x2u=u.
> 1 gives directly the bound on E;.

_ IRN(#) —¢] _w _ IRN(t) —]

~

Error bounds for real numbers

El(t) =

It S1+40 o(t) = IRN(2)|

Proof:

» Assume 1 < t < (3, so that

RN(t) € {1,1+2u,1+4u,...,8}.

v

Then |RN(t) — t| < 2 x 2u = u.
Dividing by RN(t) > 1 gives directly the bound on E;.

v

v

If t > 1+ u then the bound Eq(t) < e follows.

v

Elsel<t<l+u = RN(t)=1 = E(t) =" < 4.

IRN(t) — t| o v _|RN(t) — ¢

~

Error bounds for real numbers

IRN(t) — t| o v _|RN(t) — ¢

Fi(t) = It S1+40 o(t) = RN(t)|

Proof:

» Assume 1 < t < (3, so that

RN(t) € {1,1+2u,1+4u,...,8}.

v

Then |RN(t) — t| < 2 x 2u = u.
Dividing by RN(t) > 1 gives directly the bound on E;.

v

v

If t > 1+ u then the bound Eq(t) < e follows.

v

Else 1 < t<1+U:>RN()_I:El(t):%<liu' H

Bound 7 : sharp and well known [Dekker'71, Holm'80, Knuth'81-98],
but simpler bound u almost always used in practice.

Correct rounding

This is the result of the composition of two functions: basic
operations performed exactly, and exact result then rounded:

x,y €F, op==4,x,+ = return 7 := RN(xop y).

op extends to square root and FMA (fused multiply add: xy + z).

10

Correct rounding

This is the result of the composition of two functions: basic
operations performed exactly, and exact result then rounded:

x,y €F, op=+4,x,+ = return 1 := RN(xop y).

op extends to square root and FMA (fused multiply add: xy + z).

» The error bounds on E; and E; yield two standard models:

F=(xopy) x (L+41), [01] < 25 = un,
1

1465’

= (xopy) x |02] < u.

10

Example

Let r = ’H'Ty be evaluated naively as 7 = RN(

RN(x+y)
2

).

11

Example

Let r = *3¥ be evaluated naively as 7 = RN (w)

» High relative accuracy is ensured:

RN(x + y)

2

Xty
2

T= (1+61), |01] < uy,

(1+0)1+0), [d1] < u,

cr(l1+e), le] < 2u.

11

Example

Let r = *5¥ be evaluated naively as 7 = RN (w)

» High relative accuracy is ensured:

RN(x + y)

2

Xty
2

T= (1+61), |01] < uy,

(1+0)1+0), [d1] < u,

cr(l1+e), le] < 2u.

» We'd also like to have min(x,y) <7 < max(x,y) ...

11

Example

X Not always true:

B=10, p=3 = RN(

RN(5.01 +5.03)

2

)

10

2

)-s

12

Example

X Not always true:

RN(5.01 +5.03)

B=10, p=3 = RN(.

v True in base two or if sign(x) # sign(y).

)

10

2

)-s.

12

Example

X Not always true:

2 2

RN(5.01 + 5.03 10
B=10, p=3 = RN(()>—RN< >_5.

v True in base two or if sign(x) # sign(y).

Proof for base two:

7= RN (BN) = RN (452).

» x< X<y = RN(x) <RN(*) <RN(y)

= x<Tr<y. O

12

Example

X Not always true:

2 2

RN(5.01 + 5.03 10
B=10, p=3 = RN(()>—RN< >_5.

v True in base two or if sign(x) # sign(y).

Proof for base two:

7:=RN <L<N(x+y)) = RN(%).

» x< X<y = RN(x) <RN(*) <RN(y)

= x<Tr<y. O

< Repair other cases using r = x + 5=, [Sterbenz’74, Boldo'15]

12

Error properties of arithmetic operations over F

13

Conditions for exact subtraction
Sterbenz’ lemma:

x,y € F,

[Sterbenz'74]

x—yel.

14

Conditions for exact subtraction
Sterbenz’ lemma: [Sterbenz'74]

x,y € F, <x <2y = x—yeTF.

» Valid for any base 5.

» Applications: Cody and Waite's range reduction, Kahan's
accurate algorithms (discriminants, triangle area), ...

14

Conditions for exact subtraction
Sterbenz’ lemma: [Sterbenz'74]

x,y €F, <x <2y = x—yel.

» Valid for any base 5.

» Applications: Cody and Waite's range reduction, Kahan's
accurate algorithms (discriminants, triangle area), ...

» Proof: [Hauser'96]
» assume 0 < y < x < 2y.
» ulp(y) <ulp(x) = x—y € BZ with 5 = ulp(y).
» XY

. . x—y y P
5% is an integer such that 0 < g < Hoy < 8P,]

14

Representable error terms

Addition and multiplication:

x,y €F, ope{+,x} = xopy —RN(xopy) € F.

Division and square root:
x —yRN(x/y) € F, X—RN(\/;)zeF.

» Noted quite early. [Dekker'71, Pichat'76, Bohlender et al.’91]
» RN required only for ADD and SQRT. [Boldo & Daumas'03]

FMA: its error is the sum of two floats. [Boldo & Muller'11]

15

Error-free transformations (EFT)
Floating-point algorithms for computing such error terms exactly:

» x +y — RN(x + y) in 6 additions [Mgller'65, Knuth] and not less
[Kornerup, Lefévre, Louvet, Muller'12]

16

Error-free transformations (EFT)
Floating-point algorithms for computing such error terms exactly:

» x +y — RN(x + y) in 6 additions [Mgller'65, Knuth] and not less
[Kornerup, Lefévre, Louvet, Muller'12]
» xy — RN(xy) can be obtained

» in 17 + and x [Dekker'71, Boldo’06]
» in only 2 ops if an FMA is available:

z:=RN(xy) = xy—z=FMA(x,y,—2).

16

Error-free transformations (EFT)
Floating-point algorithms for computing such error terms exactly:

» x +y — RN(x + y) in 6 additions [Mgller'65, Knuth] and not less
[Kornerup, Lefévre, Louvet, Muller'12]

» xy — RN(xy) can be obtained
» in 17 + and x [Dekker'71, Boldo’06]
» in only 2 ops if an FMA is available:

z:=RN(xy) = xy—z=FMA(x,y,—2).
» Similar FMA-based EFT for DIV, SQRT ... and FMA.
EFT are key for extended precision algorithms: error compensation
[Kahan'65, ..., Higham'96, Ogita, Rump, Oishi’04+, Graillat, Langlois,

Louvet'05+, ...], floating-point expansions [Priest'91, Shewchuk'97,
Joldes, Muller, Popescu’'14+].

16

Optimal relative error bounds

When t can be any real number, Ei(t) < i and Ex(t) < u are
best possible:

t:=14+u = RN(t)islorl+2u = [t—RN(t)=u.

17

Optimal relative error bounds

When t can be any real number, Ei(t) < i and Ex(t) < u are
best possible:

t:=14+u = RN(t)islorl+2u = [t—RN(t)=u.

Hence
u

El(t): 1+u

17

Optimal relative error bounds

When t can be any real number, Ei(t) < i and Ex(t) < u are
best possible:

t:=14+u = RN(t)islorl+2u = [t—RN(t)=u.

Hence
u

El(t): 1+u

and, if rounding ties “to even”, RN(t) = 1 and thus

E2(t) = u.

17

Optimal relative error bounds

When t can be any real number, Ei(t) < i and Ex(t) < u are
best possible:

t:=14+u = RN(t)islorl+2u = [t—RN(t)=u.

Hence
u

El(t): 1+u

and, if rounding ties “to even”, RN(t) = 1 and thus

E2(t) = u.

These are examples of optimal bounds:
» valid for all (£,RN) with ¢ of a certain type;
» attained for some (t,RN) with t parametrized by 5 and p.

17

Can we do better when t = xopy and x,y € F?

This depends on op and, sometimes, on 3 and p. [J. & Rump'14]

18

Can we do better when t = xopy and x,y € F?
This depends on op and, sometimes, on 3 and p. [J. & Rump'14]

t optimal bound on E;(t) optimal bound on Ex(t)
xty e u
xy el C)) u (%)
e HB>2 u if 8> 2,
x/y .
—2 .
u—2u? fB=2 Thas U B=2
VX 1— e vV1i+2u—1

(%) iff B> 2 or 2P +1 is not a Fermat prime.

— Two standard models for each arithmetic operation.
— Application: sharper bounds and/or much simpler proofs.

Some Wilkinson's bounds made simpler and sharper

19

Floating-point summation

Given xq,...,x, € IF, evaluate their sum in any order.

Classical analysis [Wilkinson'60]:
» Apply the standard model n — 1 times.

» Deduce that the computed value 5 € F satisfies

n n
I
i=1 i=1

20

Floating-point summation

Given xq,...,x, € IF, evaluate their sum in any order.

Classical analysis [Wilkinson'60]:
» Apply the standard model n — 1 times.

» Deduce that the computed value 5 € F satisfies

n n
e Su <okl o
i=1 i=1

v Easy to derive, valid for any order, asymptotically optimal:
error
error bound

—1lasu—0.

20

Floating-point summation

Given xq,...,x, € IF, evaluate their sum in any order.

Classical analysis [Wilkinson'60]:
» Apply the standard model n — 1 times.

» Deduce that the computed value 5 € F satisfies

n n
e Su <okl o
i=1 i=1

v Easy to derive, valid for any order, asymptotically optimal:

error
error bound —lasu—0.

X But a = (n—1)u+ O(u?), which hides a constant.
So, classically bounded as

ku

a < Yn-1, Yk = ku < 1. [Higham'96]

20

A simpler, O(u?)-free bound

Theorem [Rump'12]

For recursive summation, one can take o = (n — 1)u.

21

A simpler, O(u?)-free bound

Theorem [Rump'12]

For recursive summation, one can take o = (n — 1)u.

To prove this,
X don't use just the refined standard model, since

(I+5)" ' —1<(n—1)u

only for n < 4.

21

A simpler, O(u?)-free bound

Theorem [Rump'12]
For recursive summation, one can take o = (n — 1)u.
To prove this,
X it might be difficult to use the usual backward error analysis:
> 5= Zi X,'(l + 0,‘),
>[5 = 20l < maxi [6i] - 325 [xl,

22

A simpler, O(u?)-free bound

Theorem [Rump'12]

For recursive summation, one can take o = (n — 1)u.

To prove this,
X it might be difficult to use the usual backward error analysis:
> 5= Zi X,'(l + 0,‘),
>[5 = 20l < maxi [6i] - 325 [xl,

since for
lvtv—v+u—u+---

and RN with ties 'to away’
-1
miax|9,-| =1+ -1
= (n—1u+ 0.

22

A simpler, O(u?)-free bound

Theorem [Rump'12]

For recursive summation, one can take o = (n — 1)u.

To prove this,
» Proceed forward:

23

A simpler, O(u?)-free bound

Theorem [Rump'12]

For recursive summation, one can take o = (n — 1)u.

To prove this,
» Proceed forward:

» Combine

u

[RN(x +y) = (x +y)l < gIx + v, (1)

with the lower-level property

IRN(x +y) = (x+y)| <|f =(x+y)l, VFfeF,
<

min{|x|, [y|}; (2)

23

A simpler, O(u?)-free bound
Theorem [Rump'12]
For recursive summation, one can take o = (n — 1)u.

To prove this,
» Proceed forward:

» Combine

IRN(x +y) — (x +¥)| < 5 1x + v, (1)

with the lower-level property

IRN(x +y) = (x+y)| <|f=(x+y)l, VFfeF,
< min{|x|, [y[}; (2)

» Conclude by induction on n with a clever case-distinction

comparing [x,| to v - |x|, and using either (1) or (2).

23

Wilkinson’s bounds revisited

Problem Classical «

summation (n—1)u+ O(u?)

New «

(n—1)u

Ref.

[1]

24

Wilkinson’s bounds revisited

Problem Classical o
summation (n—1)u+ O(u?)
dot prod., mat. mul. nu 4+ O(u?)

Euclidean norm (24 1)u+ O(u®)
Tx=b, A=1LU nu + O(u?)
A=RTR (n+1)u+ O(u?)
x" (recursive, f =2) (n—1)u+ O(u?)
product xix2 - - - Xn (n—1)u+ O(u?)
poly. eval. (Horner) 2nu + O(u?)
(x)if n< O(1/y/u)

New o

(n—1)u
(3 +1)u
(n+1)u
(n—1)u
(n—1u

2nu

(%)
(%)
(%)

Ref.

[1]
[1]
2]
(2]
2]
(3]
[4]
[4]

[1]: with Rump'13; [2]: with Rump'1l4; [3]: Graillat, Lefévre, Muller'14;

[4]: with Biinger and Rump’14.

24

Remarks

» Except for Horner's rule, these bounds hold for any ordering.

» Further refinements are possible:

H P u H .
> using up 1= i instead of u;

» assuming recursive summation and 20nu < 1. [Mascarenhas'16]

25

Remarks

» Except for Horner's rule, these bounds hold for any ordering.

» Further refinements are possible:

H P u H .
> using up 1= i instead of u;

» assuming recursive summation and 20nu < 1. [Mascarenhas'16]

» Key ingredients for analyzing Horner’s rule in degree n:
» see it as (x)(+x)- - (+x)(+);
> bound the relative error of RN(RN(x + y)z) by

u

1+ Vu'

T+ u)(1+u,)—1, Uy &

» show that o < (14 ug)"™™ (14 u,)"t — 1< 20w

25

Analyzing highly accurate kernels

26

Kahan’s algorithm for ad — bc

Kahan's algorithm uses the FMA to evaluate det [i Z] = ad — bc:

:= RN(bc¢);
= RN(ad —w); e:=RN(w — bc);
= RN(f + e);

S W)

Kahan’s algorithm for ad — bc

Kahan's algorithm uses the FMA to evaluate det [i Z] = ad — bc:

w = RN(bc);
f:=RN(ad —w); e:=RN(w — bc);
T:=RN(f +e)

» The operation ad — bc is not in IEEE 754, but very common:

» complex arithmetic,
» discriminant of a quadratic equation,
» robust orientation predicates using tests like 'ad — bc > €?’

> If evaluated naively, ad — bc leads to highly inaccurate results:

can be of the order of u™! > 1.

f -

7]

27

Kahan’s algorithm for ad — bc

» Analysis in the standard model [Higham’96]:

[r—r| ulbe|
ERL (1+4%).

= high relative accuracy as long as u|bc| % 2|r|.

28

Kahan’s algorithm for ad — bc

» Analysis in the standard model [Higham’96]:

[r—r| ulbe|
ERL (1+4%).

= high relative accuracy as long as u|bc| % 2|r|.

» When u|bc| > 2|r|, the error bound can be > 1 and does not
even allow to conclude that sign(¥) = sign(r).

28

Kahan’s algorithm for ad — bc

» Analysis in the standard model [Higham’96]:

[r—r| ulbe|
ERL (1+4%).

= high relative accuracy as long as u|bc| % 2|r|.

» When u|bc| > 2|r|, the error bound can be > 1 and does not
even allow to conclude that sign(¥) = sign(r).

In fact, Kahan's algorithm is always highly accurate:

X the standard model alone fails to predict this;

X misinterpreting bounds = dismissing good algorithms.

28

Further analysis [J.. Louvet, Muller'13]

The key is an ulp-analysis of the error terms ¢; and ¢, given by:

w := RN(bc);
f:=RN(ad —w); e:=RN(w—bc);| f=ad—w+es
T:=RN(f +¢) T=f+e+te

» Since e is exactly w — bc, we have ¥ — r = €1 + e5.
» Furthermore, we can prove that |¢;| < %ulp(r) for i =1,2.

Proposition: [r — r| < Sulp(r) < 28u]r|.

29

Further analysis [J.. Louvet, Muller'13]

The key is an ulp-analysis of the error terms ¢; and ¢, given by:

w := RN(bc);
f:=RN(ad —w); e:=RN(w—bc);| f=ad—w+es
T:=RN(f +¢) T=f+e+te

» Since e is exactly w — bc, we have ¥ — r = €1 + e5.
» Furthermore, we can prove that |¢;| < gulp(r) for i =1,2.

Proposition: [r — r| < Sulp(r) < 28u]r|.

These bounds mean Kahan's algorithm is always highly accurate.

29

Further analysis [J.. Louvet, Muller'13]

We can do better via a case analysis comparing |ez| to Fulp(r):

Theorem:
> relative error [r — r|/|r| < 2u;

30

Further analysis [J.. Louvet, Muller'13]

We can do better via a case analysis comparing |ez| to Fulp(r):

Theorem:
> relative error [r — r|/|r| < 2u;

» this bound is asymptotically optimal.

30

Certificate of optimality

This is an explicit input set parametrized by and p such that

error
—_— 1 as u—0.
error bound

31

Certificate of optimality

This is an explicit input set parametrized by and p such that

error
—_— 1 as u—0.
error bound

Example: for Kahan's algorithm for r = ad — bc:
a=b=pr14+1

Forlfd 1
2u 1+ p1-p

c=prt4 Bpr2 = =1-2u+ O(s?).

d=2pP1 4 Lpp2

31

Certificate of optimality

This is an explicit input set parametrized by and p such that

error
—_— 1 as u—0.
error bound

Example: for Kahan's algorithm for r = ad — bc:

a=b=pr14+1
[F—rl/lr] _ 1

= =1-2 2.
2u 1+ p1-p u+0(ur)

c=p3r"1 4 %:"3”*2 =

__opp—1 B pp—2
d=2pP"1 4+ 0P

» Optimality is asymptotic, but often OK in practice: for 5 = 2
and p = 11, the above example has relative error 1.999024...u.

» The certificate consists of sparse, symbolic floating-point data,
which we can handle automatically. [J., Louvet, Muller, Plet]

31

Conclusion

32

Summary

Floating-point arithmetic is
» specified rigorously by IEEE 754,

> highly structured and much richer than the standard model.

Exploiting this structure leads to
» optimal standard models for basic arithmetic operations,
» simpler and sharper Wilkinson-like bounds,

» proofs of nice behavior of some numerical kernels.

33

Future directions

Optimal error bounds for complex arithmetic:

» Naive evaluation of z = (a + ib)(c + id) in floating-point
= |z—2z|/|z| < V5u [Brent, Percival, Zimmermann’'07]

» Similar results for other schemes [with Kornerup, Louvet,
Muller'14]

» For inversion, best constant &~ 2.7 [with Louvet, Muller, Plet'15]

» Best constants for division and square root?

34

Future directions

Optimal error bounds for complex arithmetic:

» Naive evaluation of z = (a + ib)(c + id) in floating-point
= |z—2z|/|z| < V5u [Brent, Percival, Zimmermann’'07]

» Similar results for other schemes [with Kornerup, Louvet,
Muller'14]

» For inversion, best constant &~ 2.7 [with Louvet, Muller, Plet'15]

» Best constants for division and square root?

Robustness issues

» What if roundings other than to nearest? [Demmel, Nguyen'13],
[Boldo, Graillat, Muller'16]; [Ozaki, Ogita, Biinger, Oishi'15]

» How to take underflow and overflow into account?

34

	Context
	Floating-point arithmetic
	Error properties of arithmetic operations over F
	Some Wilkinson's bounds made simpler and sharper
	Analyzing highly accurate kernels
	Conclusion

