
EEEEEEEEEvvvvvvvvvaaaaaaaaallllllllluuuuuuuuuaaaaaaaaatttttttttiiiiiiiiinnnnnnnnnggggggggg ssssssssstttttttttrrrrrrrrraaaaaaaaaiiiiiiiiiggggggggghhhhhhhhhttttttttt---------llllllllliiiiiiiiinnnnnnnnneeeeeeeee ppppppppprrrrrrrrrooooooooogggggggggrrrrrrrrraaaaaaaaammmmmmmmmsssssssss

ooooooooovvvvvvvvveeeeeeeeerrrrrrrrr bbbbbbbbbaaaaaaaaallllllllllllllllllsssssssss

JORIS VAN DER HOEVEN

AND

GRÉGOIRE LECERF

Laboratoire d'informatique

École polytechnique

Motivation: High Quality Computation 2/16
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

→ Compute fast with intervals and balls, subdivision methods, certified path tracking...

Example of subdivision method: draw f> 0,

where f:ℝ2 →ℝ is continuous in a+ [−R,R]2.

We evaluate B(b,s) = f(B(a, 2√ R))B−−−B(ℝ2,ℝ), and distinguish three cases:

• All the points in B(b,s) are positive, then draw all points in a+ [−R,R]2.

• All the points in B(b,s) are negative, then return.

• Otherwise 0B−−−B(b,s), subdivide [−R,R]2 into 4 squares of size [−R/2,R/2]2, and call
the algorithm recursively on each smaller square.

a
a+ (R/2,R/2)

a+ (R/2,−R/2)a+ (−R/2,−R/2)

a+ (−R/2,R/2)

	 Very simple robust technique. / Balls have “large” radii in low recursion depth.

Machine arithmetic 3/16
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Representation

ℜ is the set of machine floating point numbers, with p⩾ 16 bits of precision.

Emin and Emax are the minimal and maximal exponents (included).

For IEEE-754 double precision numbers: p= 53, Emin = −1022 and Emax = 1023.

ℜ is enlarged with symbols −∞, +∞, and NaN.

Rounding modes ↓ downwards ↑ upwards \ nearest ↭ unspecified

Let I B−−− {↓, \,↑, ↭}, xB−−−ℝ, and ∗B−−− {+,−,×,…}.

x
I
B−−−ℜ is the approximation of x in ℜ with the specified rounding mode.

x ∗
I
y is a shorthand for (x ∗ y)

I
, I[x y + a2 b] is a shorthand for x

I
×

I
y

I
+

I
(a

I
×

I
a

I
) ×

I
b

I
.

Errors ε
I
(x) := |x

I
− x| stands for the rounding error, that may be +∞.

ε̄
I
is any upper bound function for ε

I
that is easy to compute.

With IEEE-754, in absence of underflows/overflows, we may take

ε̄
I
(x) = |x

I
| ϵ

I
, with ϵ

I
= 2−p+1 for I≠ ♮ and ϵ♮= 2−p.

Exact ball arithmetic 4/16
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Closed balls

Let 𝔸 denote ℝ or ℂ.

Let aB−−−𝔸 and rB−−−ℝ⩾ := {xB−−−ℝ:x ⩾0}.

B(a, r) := {xB−−−𝔸: |x − a| ⩽ r}.

The set of such balls is denoted by B(𝔸,ℝ).

Ball operations

B(a, r) ± B(b,s) := B(a± b, r+ s),
B(a, r) × B(b,s) := B(ab, (|a| + r)s + |b| r).

Inclusion principle

given ∗B−−− {+,−,×}, xB−−−B(a, r) and yB−−−B(b,s), we have x∗ yB−−−B(a, r) ∗ B(b,s).

In fact, if a'B−−−B(a, r) and b'B−−−B(b,s), then

|a'b' − ab| ⩽ |a' (b'− b) +b (a' − a)| ⩽ (|a| + r)s + |b| r.

Certified machine ball arithmetic 5/16
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Usual certified arithmetic for balls with centers in ℜ or ℜ[i] and radii in ℜ:

B(a, r) ±
I
B(b,s) := B(a±

I
b,↑[r+ s + ε̄

I
(a± b)])

B(a, r) ×
I
B(b,s) := B(a×

I
b,↑[(‖a‖ + r) s +‖b‖ r+ ε̄

I
(ab)]).

	 The inclusion principle is preserved.

	 Usually, the rounding mode I for centers is set to the nearest.

Related work 6/16
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

• Matrix products over real balls: series of papers by Rump, Ogita, Oishi, Ozaki, from
1999.

	 Mostly perform operations on centers, and then rely on fast bounds on radii.

	 Exploit HPC solutions for numeric types.

• Matrix products over intervalls: Hong Diep Nguyen (2011), Revol and Théveny
(2014).

• Use of SIMD instructions for intervals: Gudenberg (2002).

	 Rather modest speed-up.

	 Changing the rounding mode is expensive on old hardware such as x87.

• Stolte (2005): use x87 and SSE units with independent rounding modes for interval
arithmetic.

• Use of the opposite trick to minimize rounding mode changes in interval arithmetic:
Gudenberg (2002), Lambov (2008), Goualard (2008).

	 Nowadays, switching rounding modes is fast with AVX technologies.

	 Rounding modes are even integrated into AVX-512 instructions.

Straight-line programs 7/16
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

A straight-line program (SLP) Γ over a ring 𝔸 is a sequence Γ1,…,Γl of instructions

Γk == Xk := Ck or
Γk == Xk := Yk ∗ Zk, where

Xk,Yk,Zk are variables in a finite ordered set 𝒱 ,

Ck are constants in 𝔸, and ∗B−−− {+,−,×}.

Input variables: I1,…, Im, are those that appear for the first time in the sequence in the
right-hand side of an instruction.

Output variables: a distinguished subset O1,…,On of the variables.

The length lΓ = l of the sequence is called the length of Γ.

Evaluation function: EΓ:𝔸m →𝔸n

given (a1,…,am)B−−−𝔸m, we assign ai to Ii for i = 1,…,m,

then evaluate the instructions of Γ in sequence, and

finally read off the values of O1,…,On, which determine EΓ(a1,…,am).

Example of a SLP 8/16
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Let us consider Γ, of length l = 4:

x1 := 5, x2 := a1 × a2, x1 :=x1 × x2, x3 :=x1 + a1.

The input variables are a1 and a2.

We distinguish x3 as the sole output variable.

This SLP thus computes the function 5a1 a2 + a1.

The associated computation graph:

× ×
+

5

a1

a2

Transient ball arithmetic 9/16
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Let us fix a rounding mode I B−−− {↓, ♮,↑, ↭}.

	 Taking errors on the centers into account for certified ball arithmetic is expensive.

Transient ball arithmetic

Ĩ denotes the corresponding “rounding mode” for :

B(a, r) ±
Ĩ
B(b,s) := B(a±

I
b, I[r+ s]),

B(a, r) ×
Ĩ
B(b,s) := B(a×

I
b, I[(|a| + r)s + |b| r]).

	 These formulas do not satisfy the inclusion principle.

Semi-exact ball arithmetic 10/16
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Semi-exact ball arithmetic

with centers in 𝔄=ℜ or 𝔄=ℜ[i], and radii in ℝ:

All computations on centers are done using a given rounding mode I.

All computations on radii are exact.

B(a, r∗) ±∗ B(b,s∗) = B(a+
I
b, r∗ + s∗ + ε̄

I
(a+ b)),

B(a, r∗) ×∗ B(b,s∗) = B(a×
I
b, (|a| + r∗) s∗ + |a| s∗ + ε̄

I
(ab)),

for any a,bB−−−𝔄 and r∗,s∗
B−−−ℝ⩾.

	 It satisfies the inclusion principle.

	 We investigate how far the transient arithmetic deviates from this semi-exact arith-
metic.

Main theorem 11/16
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Let Γ be a SLP of length lΓ, and depth qΓ, and let α> 0 be such that 1+ α> (1+ ϵ)4qΓ.

Consider two evaluations of Γ with two different ball arithmetics:

• the first evaluation uses the semi-exact arithmetic with ε̄
I
(x) = |x

I
| ϵ;

• the second evaluation uses transient ball arithmetic with I.

Any input or constant ball B(a, r∗) is replaced by a larger ball B(a, r) with

r ⩾ max (|a| ((1+ ϵ)βqΓ − 1), (1+α) r∗), where

β ⩾ max (3, 1+α
α γ), γ ⩾(((((1+ 1

2 + …+ 1
qΓ))))) (1+ ϵ)4qΓ α

1+ α (((((((1− (1+ϵ)4qΓ

1+ α)))))))−1
.

Assume: no underflow or overflow occurs during the second evaluation.

Conclusion: for all B(c, t∗) in the output of the first evaluation with corresponding entry
B(c, t) for the second evaluation, we have t∗ ⩽ t.

	 α~− 1, γ~− logqΓ
4qΓ

, βqΓ ~− logqΓ, so r>~ ϵ |a| logqΓ.

	 The loss of relative precision grows with the depth qΓ of the SLP.

Software overview 12/16
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

MATHEMAGIX

• C++ libraries:

NUMERIX: double, complex, intervall, balls, modular integers, arbitrary large inte-
gers (GMP) and floating point numbers (MPFR), optimized fixed medium precision.

MULTIMIX: SLPs, naive interpreted evaluation, compilation into dynamic libraries
loaded via dlopen, and fast JIT compilation (restricted to double and SSE2). Plus
other structures for multivariate polynomials and series.

• Compiled MATHEMAGIX language:

RUNTIME: basic JIT compilation (just in time) facilities from assembly language.

JUSTINLINE: templated SLP data type with additional JIT facilities. This includes
common subexpression simplification, constant simplification, register allocation,
and vectorization.

• Import/exports between C++ and MATHEMAGIX.

http://www.mathemagix.org

Timings for numeric types 13/16
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Platform

INTEL(R) CORE(TM) i7-4770 CPU at 3.40 GHz and 8 GB of 1600 MHz DDR3 memory.

Features AVX2 and FMA technologies.

JESSIE GNU DEBIAN operating system with a 64 bit LINUX kernel version 3.14.

GCC version 4.9.2 with options -O3 -mavx2 -mfma -mfpmath=sse.

Benchmark

A multivariate polynomial over double, with 10 variables, made of 100 terms,

built from random monomials of partial degrees at most 10.

The evaluation of this SLP takes 1169 products and 100 sums.

Timings in (μs) double complex<double>
MULTIMIX, interpreted, naive 2.1 3.4
MULTIMIX, compiled in 260ms 0.29 1.3
MULTIMIX, JIT, compiled in 50μs, no optimization 0.84 N/A
JUSTINLINE, JIT, compiled in 8ms, optimized 0.43 1.4

Timings for real balls 14/16
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Early versions of the MATHEMAGIX libraries already contained a C99 portable imple-
mentation of ball arithmetic in the NUMERIX library.

	 Serious overhead due to function calls to libc, libm.

We carefully tuned the AVX2 + FMA assembly code generated by our SLP compiler:

For instance, if ymm0 contains −0.0 and if ymm1 contains a center a, then −a is
obtained as vxorpd ymm0 ymm1 ymm2, and |a| as vandnpd ymm0 ymm1 ymm2.

	 latency = throughput = 1 cycle to compute |a|.

Timings in (μs) Ball over double
Naive, exact, C99 62
Naive, transient 14
Compiled, transient 2.0
JIT, exact 3.2
JIT, transient 1.8

	 Transient arithmetic is just about 4.2 times slower than numeric arithmetic.

	 This turns out to be competitive with interval arithmetic, where each interval product
usually requires 8 machine multiplications and 6 min/max operations.

Timings for complex balls 15/16
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

The computation of norms is expensive in this case, because the scalar square root
instruction takes 13 CPU cycles.

In order to reduce this cost, we rewrite SPLs so that norms of products are computed
as products of norms.

Timings in (μs)

Ball over

complex<double>
Naive, exacte, C99 130
Naive, transient 18
Compiled, transient 4.0
JIT, exact 4.5
JIT, transient 3.1

Transient arithmetic strategy is about 2.4 slower than numeric arithmetic.

Conclusion 16/16
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Conclusion

• Robust numeric arithmetic finally involves a small overhead via AVX & FMA tech-
nologies.

More in the paper

• Precision analysis;

• Managing underflows and overflows;

• Vectorization.

Work in progress

• Significant speed-ups in our numerical solvers;

• Robust numerical integration;

• Development of specific JIT compilers for SLPs;

• Adapt present results to standard intervals.

