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Target applications

1 Need massive parallel computations

→ high performance computing using graphics processors – GPUs

2 Need more precision than standard available (up to few hundred bits)

→ extend precision using floating-point expansions

Chaotic dynamical systems:

bifurcation analysis,

compute periodic orbits (e.g., finding sinks in the
Hénon map, iterating the Lorenz attractor),

celestial mechanics (e.g., long term stability of the
solar system).

Experimental mathematics: ill-posed SDP problems in

computational geometry (e.g., computation of
kissing numbers),

quantum chemistry/information,

polynomial optimization etc.
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Extended precision

Existing libraries:

GNU MPFR - not ported on GPU;

GARPREC & CUMP - tuned for big array operations: data generated on host,
operations on device;

QD & GQD - limited to double-double and quad-double; no correct rounding.

What we need:

support for arbitrary precision;

runs both on CPU and GPU;

easy to use;

CAMPARY – CudaA Multiple Precision ARithmetic librarY –
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CAMPARY (CudaA Multiple Precision ARithmetic librarY)

Our approach: multiple-term representation
– floating-point expansions –

Pros:
– use directly available and highly optimized native FP infrastructure;
– straightforwardly portable to highly parallel architectures, such as GPUs;
– sufficiently simple and regular algorithms for addition.

Cons:
– more than one representation;
– existing multiplication algorithms do not generalize well for an arbitrary number
of terms;
– difficult rigorous error analysis → lack of thorough error bounds.
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Non-overlapping expansions

R = 1.11010011e− 1 can be represented, using a p = 5 (in radix 2) system, as:

R = x0 + x1 + x2:
x0 = 1.1000e− 1;
x1 = 1.0010e− 3;
x2 = 1.0110e− 6.

Most compact R = z0 + z1:{
z0 = 1.1101e− 1;
z1 = 1.1000e− 8.

Less compact
R = y0 + y1 + y2 + y3 + y4 + y5:

y0 = 1.0000e− 1;
y1 = 1.0000e− 2;
y2 = 1.0000e− 3;
y3 = 1.0000e− 5;
y4 = 1.0000e− 8;
y5 = 1.0000e− 9;

Solution: the FP expansions are required to be non-overlapping.

Definition: ulp -nonoverlapping.

For an expansion u0, u1, . . . , un−1 if for all 0 < i < n, we have |ui| ≤ ulp (ui−1).

Example: p = 5 (in radix 2)
x0 = 1.1010e − 2;;
x1 = 1.1101e − 7;
x2 = 1.0000e − 11;
x3 = 1.1000e − 17.

Restriction: n ≤ 12 for single-precision and n ≤ 39 for double-precision.
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Error-Free Transforms: Fast2Sum & 2MultFMA

Algorithm 1 (Fast2Sum (a, b))

s← RN (a+ b)
z ← RN (s− a)
e← RN (b− z)
return (s, e)

Requirement:

ea ≥ eb;

→ Uses 3 FP operations.

Algorithm 2 (2MultFMA (a, b))

p← RN (a · b)
e← fma(a, b,−p)
return (p, e)

Requirement:

ea + eb ≥ emin + p− 1;

→ Uses 2 FP operations.
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Existing multiplication algorithms

1 Priest’s multiplication [Pri91]:
– very complex and costly;
– based on scalar products;
– uses re-normalization after each step;
– computes the entire result and “truncates” a-posteriori;
– comes with an error bound and correctness proof;

2 quad-double multiplication in QD library:
– does not straightforwardly generalize;
– can lead to O(n3) complexity;
– worst case error bound is pessimistic;
– no correctness proof is provided.
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New multiplication algorithms

requires: ulp -nonoverlapping FP expansion x = (x0, x1, . . . , xR−1) and
y = (y0, y1, . . . , yR−1).

ensures: ulp -nonoverlapping FP expansion π = (π0, π1, . . . , πR−1).

Let me explain it with an example ...
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Example: n = 4,m = 3 and r = 4

paper-and-pencil intuition;

term-times-expansion products, xi · y;

on-the-fly “truncation”;

error correction term, πr.
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Example: n = 4,m = 3 and r = 4

[ r·p
b
] + 2 containers of size b (s.t. 3b > 2p);

b+ c = p− 1, s.t. we can add 2c numbers without
error; (binary64 → b = 45, binary32 → b = 18)

starting exponent e = ex0 + ey0 ;

each bin’s LSB has a fixed weight;

bins initialized with 1.5 · 2e−(i+1)b+p−1;

the number of leading bits, `;

accumulation done using a Fast2Sum and addition
[Rump09];
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Example: n = 4,m = 3 and r = 4

subtract initial value;

apply renormalization step to B:
– Fast2Sum and branches;
– render the result ulp -nonoverlapping;

tight error bound:

|x0y0|2
−(p−1)r

[1 + (r + 1)2
−p

+

+ 2
−(p−1)

 −2−(p−1)

(1 − 2−(p−1))2
+

m + n − r − 2

1 − 2−(p−1)

]
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Comparison

Table : Worst case FP operation count when the input and output expansions are of size r.

r 2 4 8 16

New algorithm 138 261 669 2103

Priest’s mul.[Pri91] 3174 16212 87432 519312

Table : Performance in MFlops/s for multiplying two FP expansions on a Tesla K40c GPU,
using CUDA 7.5 software architecture, running on a single thread of execution. ∗ precision not
supported

dx, dy, dr New algorithm QD
2, 2, 2 0.027 0.1043

1, 2, 2 0.365 0.1071

3, 3, 3 0.0149 ∗
2, 3, 3 0.0186 ∗
4, 4, 4 0.0103 0.0174

1, 4, 4 0.0215 0.0281

2, 4, 4 0.0142 ∗
8, 8, 8 0.0034 ∗
4, 8, 8 0.0048 ∗

16, 16, 16 0.001 ∗
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Conclusions

AMPAR
CudA  Multiple  Precision  ARithmetic  librarY

Available online at: http://homepages.laas.fr/mmjoldes/campary/.

algorithm with strong regularity;

based on partial products accumulation;

uses a fixed-point structure that is floating-point friendly;

thorough error analysis and tight error bound;

natural fit for GPUs;

proved to be too complex for small precisions;

performance gains with increased precision.

A new multiplication algorithm for extended precision using floating-point expansions, joint work
with J.-M. Muller and, P.Tang. To be presented at IEEE 23rd Symposium on Computer Arithmetic, ARITH
2016.
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