A new multiplication algorithm for extended precision using floating-point expansions

Valentina Popescu, Jean-Michel Muller, Ping Tak Peter Tang

RAIM 2016 28 June

Target applications

In Need massive parallel computations

 \rightarrow high performance computing using graphics processors – GPUs

Target applications

Need massive parallel computations

 \rightarrow high performance computing using graphics processors – GPUs

② Need more precision than standard available (up to few hundred bits) → extend precision using floating-point expansions

Chaotic dynamical systems:

- bifurcation analysis,
- compute periodic orbits (e.g., finding sinks in the Hénon map, iterating the Lorenz attractor),
- celestial mechanics (e.g., long term stability of the solar system).

Experimental mathematics: ill-posed SDP problems in

- computational geometry (e.g., computation of kissing numbers),
- quantum chemistry/information,
- polynomial optimization etc.

Existing libraries:

- GNU MPFR not ported on GPU;
- GARPREC & CUMP tuned for big array operations: data generated on host, operations on device;
- QD & GQD limited to double-double and quad-double; no correct rounding.

Existing libraries:

- GNU MPFR not ported on GPU;
- GARPREC & CUMP tuned for big array operations: data generated on host, operations on device;
- QD & GQD limited to double-double and quad-double; no correct rounding.

What we need:

- support for arbitrary precision;
- runs both on CPU and GPU;
- easy to use;

CAMPARY – CudaA Multiple Precision ARithmetic librarY –

Our approach: multiple-term representation – floating-point expansions –

CAMPARY (CudaA Multiple Precision ARithmetic librarY)

Our approach: multiple-term representation – floating-point expansions –

- Pros:
 - use directly available and highly optimized native FP infrastructure;
 - straightforwardly portable to highly parallel architectures, such as GPUs;
 - sufficiently simple and regular algorithms for addition.

CAMPARY (CudaA Multiple Precision ARithmetic librarY)

Our approach: multiple-term representation - floating-point expansions -

- Pros:
 - use directly available and highly optimized native FP infrastructure;
 - straightforwardly portable to highly parallel architectures, such as GPUs;
 - sufficiently simple and regular algorithms for addition.
- Cons:
 - more than one representation;
 - existing multiplication algorithms do not generalize well for an arbitrary number of terms;
 - difficult rigorous error analysis \rightarrow lack of thorough error bounds.

R = 1.11010011e - 1 can be represented, using a p = 5 (in radix 2) system, as:

$B = x_0 + x_1 + x_2$	
$\int x_0 = 1.1000e - 1$:	$R = y_0 + y_1 + y_2 + y_3 + y_4 + y_5:$
$\begin{cases} x_0 = 1.0010e - 3; \\ x_1 = 1.0010e - 3; \end{cases}$	$y_0 = 1.0000e - 1;$
$r_{2} = 1.0110e - 6$	$y_1 = 1.0000e - 2;$
	$y_2 = 1.0000e - 3;$
Most compact $R = z_0 + z_1$:	$y_3 = 1.0000e - 5;$
$z_0 = 1.1101e - 1;$	$y_4 = 1.0000e - 8;$
$z_1 = 1.1000e - 8.$	$u_5 = 1.0000e - 9$

R = 1.11010011e - 1 can be represented, using a p = 5 (in radix 2) system, as: $R = r_{e} + r_{e} + r_{e}$

$n = x_0 + x_1 + x_2$.	-
$x_0 = 1.1000e - 1$:	$R = y_0 + y_1 + y_2 + y_3 + y_4 + y_5:$
$\int \frac{1}{r_1} = 1.0010e = 3;$	$y_0 = 1.0000e - 1;$
1 0110 c	$u_1 = 1.0000e - 2$:
$x_2 = 1.0110e - 6.$	$u_0 = 1.0000c$ 3:
Most compact $R = z_0 + z_1$:	$\begin{cases} y_2 = 1.0000e - 3, \\ 1.0000 = 5 \end{cases}$
$\int x_0 = 1 1101e = 1$	$y_3 = 1.0000e - 5;$
$\begin{cases} 20 = 1.1101e - 1, \\ 1.1000 = 0 \end{cases}$	$y_4 = 1.0000e - 8;$
$z_1 = 1.1000e - 8.$	$u_5 = 1.0000e - 9$

Solution: the FP expansions are required to be *non-overlapping*.

Definition: *ulp-nonoverlapping*.

For an expansion $u_0, u_1, \ldots, u_{n-1}$ if for all 0 < i < n, we have $|u_i| \le ulp(u_{i-1})$. Example: p = 5 (in radix 2) $x_0 = 1.1010e - 2;;$ $x_1 = 1.1010e - 7;$ $x_2 = 1.0000e - 11;$ $x_3 = 1.1000e - 17.$ R = 1.11010011e - 1 can be represented, using a p = 5 (in radix 2) system, as: $R = r_{e} + r_{e} + r_{e}$

$n = x_0 + x_1 + x_2$.	-
$x_0 = 1.1000e - 1$:	$R = y_0 + y_1 + y_2 + y_3 + y_4 + y_5:$
$\int \frac{1}{r_1} = 1.0010e = 3;$	$y_0 = 1.0000e - 1;$
1 0110 c	$u_1 = 1.0000e - 2$:
$x_2 = 1.0110e - 6.$	$u_0 = 1.0000c$ 3:
Most compact $R = z_0 + z_1$:	$\begin{cases} y_2 = 1.0000e - 3, \\ 1.0000 = 5 \end{cases}$
$\int x_0 = 1 1101e = 1$	$y_3 = 1.0000e - 5;$
$\begin{cases} 20 = 1.1101e - 1, \\ 1.1000 = 0 \end{cases}$	$y_4 = 1.0000e - 8;$
$z_1 = 1.1000e - 8.$	$u_5 = 1.0000e - 9$

Solution: the FP expansions are required to be *non-overlapping*.

$\begin{array}{c|c} \textbf{Definition: } u|p \text{-nonoverlapping.} \\ \hline \textbf{For an expansion } u_0, u_1, \dots, u_{n-1} \text{ if for all } 0 < i < n, \text{ we have } |u_i| \leq ulp (u_{i-1}). \\ \hline \textbf{Example: } p = 5 (\text{in radix } 2) \\ \hline \textbf{u_{i-1}} \\ \hline$

Restriction: $n \leq 12$ for single-precision and $n \leq 39$ for double-precision.

Algorithm 1 (Fast2Sum(a, b))

$$s \leftarrow RN(a+b)$$

$$z \leftarrow RN(s-a)$$

$$e \leftarrow RN(b-z)$$

return (s,e)

Algorithm 2 (2MultFMA(a, b))

 $\begin{array}{l} p \leftarrow \textit{RN}(a \cdot b) \\ e \leftarrow \textit{fma}(a, b, -p) \\ \textbf{return} \quad (p, e) \end{array}$

Requirement:

 $e_a \geq e_b;$

 \rightarrow Uses 3 FP operations.

Requirement:

$$e_a + e_b \ge e_{min} + p - 1;$$

 \rightarrow Uses 2 FP operations.

- Priest's multiplication [Pri91]:
 - very complex and costly;
 - based on scalar products;
 - uses re-normalization after each step;
 - computes the entire result and "truncates" a-posteriori;
 - comes with an error bound and correctness proof;

Priest's multiplication [Pri91]:

- very complex and costly;
- based on scalar products;
- uses re-normalization after each step;
- computes the entire result and "truncates" a-posteriori;
- comes with an error bound and correctness proof;

Q quad-double multiplication in QD library:

- does not straightforwardly generalize;
- can lead to $\mathcal{O}(n^3)$ complexity;
- worst case error bound is pessimistic;
- no correctness proof is provided.

- requires: *ulp-nonoverlapping* FP expansion $x = (x_0, x_1, \dots, x_{R-1})$ and $y = (y_0, y_1, \dots, y_{R-1})$.
- ensures: *ulp-nonoverlapping* FP expansion $\pi = (\pi_0, \pi_1, \dots, \pi_{R-1})$.

Let me explain it with an example ...

		x_0	x_1	x_2	x_3	*
			y_0	y_1	y_2	
		x_0y_2	x_1y_2	x_2y_2	x_3y_2	
	x_0y_1	x_1y_1	x_2y_1	x_3y_1		
x_0y_0	x_1y_0	x_2y_0	x_3y_0			

- paper-and-pencil intuition;
- term-times-expansion products, $x_i \cdot y$;
- on-the-fly "truncation";
- error correction term, π_r .

- $\left[\frac{r \cdot p}{b}\right] + 2$ containers of size b (s.t. 3b > 2p);
- b + c = p 1, s.t. we can add 2^c numbers without error; (*binary64* \rightarrow b = 45, *binary32* \rightarrow b = 18)
- starting exponent $e = e_{x_0} + e_{y_0}$;
- each bin's LSB has a fixed weight;

- $\left[\frac{r \cdot p}{b}\right] + 2$ containers of size b (s.t. 3b > 2p);
- b + c = p 1, s.t. we can add 2^c numbers without error; (*binary64* \rightarrow b = 45, *binary32* \rightarrow b = 18)
- starting exponent $e = e_{x_0} + e_{y_0}$;
- each bin's LSB has a fixed weight;
- bins initialized with $1.5 \cdot 2^{e-(i+1)b+p-1}$;

Example: n = 4, m = 3 and r = 4

- $\left[\frac{r \cdot p}{b}\right] + 2$ containers of size b (s.t. 3b > 2p);
- b + c = p 1, s.t. we can add 2^c numbers without error; (*binary64* \rightarrow b = 45, *binary32* \rightarrow b = 18)
- starting exponent $e = e_{x_0} + e_{y_0}$;
- each bin's LSB has a fixed weight;
- bins initialized with $1.5 \cdot 2^{e-(i+1)b+p-1}$;
- the number of leading bits, ℓ ;
- accumulation done using a *Fast2Sum* and addition [Rump09];

Example: n = 4, m = 3 and r = 4

Example: n = 4, m = 3 and r = 4

• subtract initial value;

- subtract initial value;
- apply renormalization step to B:
 - Fast2Sum and branches;
 - render the result *ulp-nonoverlapping*;
- tight error bound:

$$\begin{split} |x_0y_0| 2^{-(p-1)r} [1+(r+1)2^{-p}+\\ &+ 2^{-(p-1)} \left(\frac{-2^{-(p-1)}}{(1-2^{-(p-1)})^2}+\frac{m+n-r-2}{1-2^{-(p-1)}}\right) \end{split}$$

Comparison

Table : Worst case FP operation count when the input and output expansions are of size r.

r	2	4	8	16
New algorithm	138	261	669	2103
Priest's mul.[Pri91]	3174	16212	87432	519312

Table : Worst case FP operation count when the input and output expansions are of size r.

r	2	4	8	16
New algorithm	138	261	669	2103
Priest's mul.[Pri91]	3174	16212	87432	519312

Table : Performance in $\rm MFlops/s$ for multiplying two FP expansions on a Tesla K40c GPU, using CUDA 7.5 software architecture, running on a single thread of execution. * precision not supported

d_x, d_y, d_r	New algorithm	QD
2, 2, 2	0.027	0.1043
1, 2, 2	0.365	0.1071
3, 3, 3	0.0149	*
2, 3, 3	0.0186	*
4, 4, 4	0.0103	0.0174
1, 4, 4	0.0215	0.0281
2, 4, 4	0.0142	*
8,8,8	0.0034	*
4,8,8	0.0048	*
16, 16, 16	0.001	*

- algorithm with strong regularity;
- based on partial products accumulation;

A new multiplication algorithm for extended precision using floating-point expansions, joint work with J.-M. Muller and, P.Tang. To be presented at *IEEE 23rd Symposium on Computer Arithmetic*, ARITH 2016.

- algorithm with strong regularity;
- based on partial products accumulation;
- uses a fixed-point structure that is floating-point friendly;
- thorough error analysis and tight error bound;

A new multiplication algorithm for extended precision using floating-point expansions, joint work with J.-M. Muller and, P.Tang. To be presented at *IEEE 23rd Symposium on Computer Arithmetic*, ARITH 2016.

- algorithm with strong regularity;
- based on partial products accumulation;
- uses a fixed-point structure that is floating-point friendly;
- thorough error analysis and tight error bound;
- natural fit for GPUs;

A new multiplication algorithm for extended precision using floating-point expansions, joint work with J.-M. Muller and, P.Tang. To be presented at *IEEE 23rd Symposium on Computer Arithmetic*, ARITH 2016.

- algorithm with strong regularity;
- based on partial products accumulation;
- uses a fixed-point structure that is floating-point friendly;
- thorough error analysis and tight error bound;
- natural fit for GPUs;
- proved to be too complex for small precisions;
- performance gains with increased precision.

A new multiplication algorithm for extended precision using floating-point expansions, joint work with J.-M. Muller and, P.Tang. To be presented at *IEEE 23rd Symposium on Computer Arithmetic*, ARITH 2016.