A new multiplication algorithm for extended precision using floating-point expansions

Valentina Popescu, Jean-Michel Muller, Ping Tak Peter Tang

RAIM 2016
28 June

Target applications

(1) Need massive parallel computations
\rightarrow high performance computing using graphics processors - GPUs
(2) Need more precision than standard available (up to few hundred bits)
\rightarrow extend precision using floating-point expansions

Target applications

(1) Need massive parallel computations
\rightarrow high performance computing using graphics processors - GPUs
(2) Need more precision than standard available (up to few hundred bits) \rightarrow extend precision using floating-point expansions

Chaotic dynamical systems:

- bifurcation analysis,
- compute periodic orbits (e.g., finding sinks in the Hénon map, iterating the Lorenz attractor),

- celestial mechanics (e.g., long term stability of the solar system).
Experimental mathematics: ill-posed SDP problems in
- computational geometry (e.g., computation of kissing numbers),
- quantum chemistry/information,
- polynomial optimization etc.

Extended precision

Existing libraries:

- GNU MPFR - not ported on GPU;
- GARPREC \& CUMP - tuned for big array operations: data generated on host, operations on device;
- QD \& GQD - limited to double-double and quad-double; no correct rounding.

Extended precision

Existing libraries:

- GNU MPFR - not ported on GPU;
- GARPREC \& CUMP - tuned for big array operations: data generated on host, operations on device;
- QD \& GQD - limited to double-double and quad-double; no correct rounding.

What we need:

- support for arbitrary precision;
- runs both on CPU and GPU;
- easy to use;

CAMPARY - CudaA Multiple Precision ARithmetic librarY -

CAMPARY (CudaA Multiple Precision ARithmetic librarY)

Our approach: multiple-term representation

- floating-point expansions -

CAMPARY (CudaA Multiple Precision ARithmetic librarY)

Our approach: multiple-term representation

- floating-point expansions -
- Pros:
- use directly available and highly optimized native FP infrastructure;
- straightforwardly portable to highly parallel architectures, such as GPUs;
- sufficiently simple and regular algorithms for addition.

CAMPARY (CudaA Multiple Precision ARithmetic librarY)

Our approach: multiple-term representation

- floating-point expansions -
- Pros:
- use directly available and highly optimized native FP infrastructure;
- straightforwardly portable to highly parallel architectures, such as GPUs;
- sufficiently simple and regular algorithms for addition.
- Cons:
- more than one representation;
- existing multiplication algorithms do not generalize well for an arbitrary number of terms;
- difficult rigorous error analysis \rightarrow lack of thorough error bounds.

Non-overlapping expansions

$R=1.11010011 e-1$ can be represented, using a $p=5$ (in radix 2) system, as:

$$
\begin{aligned}
& R=x_{0}+x_{1}+x_{2}: \\
& \begin{cases}x_{0}=1.1000 e-1 ; \\
x_{1}=1.0010 e-3 ; \\
x_{2}=1.0110 e-6 .\end{cases} \\
& \text { Most compact } R=z_{0}+z_{1}: \\
& \left\{\begin{array}{l}
z_{0}=1.1101 e-1 ; \\
z_{1}=1.1000 e-8 .
\end{array}\right. \\
& R=y_{0}+y_{1}+y_{2}+y_{3}+y_{4}+y_{5}: \\
& y_{0}=1.0000 e-1 ; \\
& y_{1}=1.0000 e-2 ; \\
& y_{2}=1.0000 e-3 ; \\
& y_{3}=1.0000 e-5 ; \\
& y_{4}=1.0000 e-8 ; \\
& y_{5}=1.0000 e-9 ;
\end{aligned}, ~\left\{\begin{array}{l}
\text { Less compact }
\end{array}\right.
$$

Non-overlapping expansions

$R=1.11010011 e-1$ can be represented, using a $p=5$ (in radix 2) system, as:

$$
\begin{aligned}
& R=x_{0}+x_{1}+x_{2} \text { : Less compact } \\
& \left\{\begin{array}{l}
x_{0}=1.1000 e-1 ; \\
x_{1}=1.0010 e-3 ; \\
x_{2}=1.0110 e-6 .
\end{array}\right. \\
& \text { Most compact } R=z_{0}+z_{1} \text { : } \\
& \left\{\begin{array}{l}
z_{0}=1.1101 e-1 ; \\
z_{1}=1.1000 e-8
\end{array}\right. \\
& R=y_{0}+y_{1}+y_{2}+y_{3}+y_{4}+y_{5} \text { : } \\
& \text { (} y_{0}=1.0000 e-1 \text {; } \\
& y_{1}=1.0000 e-2 \text {; } \\
& y_{2}=1.0000 e-3 \text {; } \\
& y_{3}=1.0000 e-5 \text {; } \\
& y_{4}=1.0000 e-8 ; \\
& y_{5}=1.0000 e-9 \text {; }
\end{aligned}
$$

Solution: the FP expansions are required to be non-overlapping.

Definition: ulp-nonoverlapping.

For an expansion $u_{0}, u_{1}, \ldots, u_{n-1}$ if for all $0<i<n$, we have $\left|u_{i}\right| \leq \operatorname{ulp}\left(u_{i-1}\right)$.

Example: $p=5$ (in radix 2)

$$
\left\{\begin{array}{c}
x_{0}=1.1010 e-2 \\
x_{1}=1.1101 e-7 \\
x_{2}=1.0000 e-11 \\
x_{3}=1.1000 e-17
\end{array}\right.
$$

Non-overlapping expansions

$R=1.11010011 e-1$ can be represented, using a $p=5$ (in radix 2) system, as:

$$
\left.\begin{array}{l}
R=x_{0}+x_{1}+x_{2}: \\
\begin{cases}x_{0}=1.1000 e-1 ; \\
x_{1}=1.0010 e-3 ; \\
x_{2}=1.0110 e-6 .\end{cases} \\
\text { Most compact } R=z_{0}+z_{1}: \\
\begin{cases}z_{0}=1.1101 e-1 ; \\
z_{1}=1.1000 e-8 .\end{cases} \\
R=y_{0}+y_{1}+y_{2}+y_{3}+y_{4}+y_{5}: \\
y_{0}=1.0000 e-1 ;
\end{array}\right\} \begin{aligned}
& y_{1}=1.0000 e-2 ; \\
& y_{2}=1.0000 e-3 ; \\
& y_{3}=1.0000 e-5 ; \\
& y_{4}=1.0000 e-8 ; \\
& y_{5}=1.0000 e-9 ;
\end{aligned} ~ ل\left\{\begin{array}{l}
\text { Less compact }
\end{array}\right\}
$$

Solution: the FP expansions are required to be non-overlapping.

Definition: ulp-nonoverlapping.

For an expansion $u_{0}, u_{1}, \ldots, u_{n-1}$ if for all $0<i<n$, we have $\left|u_{i}\right| \leq \operatorname{ulp}\left(u_{i-1}\right)$.

$$
\text { Example: } p=5 \text { (in radix } 2 \text {) }
$$

$$
\left\{\begin{array}{c}
x_{0}=1.1010 e-2 \\
x_{1}=1.1101 e-7 \\
x_{2}=1.0000 e-11 \\
x_{3}=1.1000 e-17
\end{array}\right.
$$

Restriction: $n \leq 12$ for single-precision and $n \leq 39$ for double-precision.

Error-Free Transforms: Fast2Sum \& 2MultFMA

Algorithm 1 (Fast2Sum (a, b))
$s \leftarrow R N(a+b)$
$z \leftarrow R N(s-a)$
$e \leftarrow R N(b-z)$
return (s, e)

Algorithm 2 (2MultFMA (a, b))

$p \leftarrow R N(a \cdot b)$
$e \leftarrow \operatorname{fma}(a, b,-p)$
return (p, e)

Requirement:

$$
e_{a} \geq e_{b}
$$

\rightarrow Uses 3 FP operations.

Requirement:

$$
e_{a}+e_{b} \geq e_{\min }+p-1
$$

\rightarrow Uses 2 FP operations.

Existing multiplication algorithms

(1) Priest's multiplication [Pri91]:

- very complex and costly;
- based on scalar products;
- uses re-normalization after each step;
- computes the entire result and "truncates" a-posteriori;
- comes with an error bound and correctness proof;

Existing multiplication algorithms

(1) Priest's multiplication [Pri91]:

- very complex and costly;
- based on scalar products;
- uses re-normalization after each step;
- computes the entire result and "truncates" a-posteriori;
- comes with an error bound and correctness proof;
(2) quad-double multiplication in QD library:
- does not straightforwardly generalize;
- can lead to $\mathcal{O}\left(n^{3}\right)$ complexity;
- worst case error bound is pessimistic;
- no correctness proof is provided.

New multiplication algorithms

- requires: ulp-nonoverlapping FP expansion $x=\left(x_{0}, x_{1}, \ldots, x_{R-1}\right)$ and $y=\left(y_{0}, y_{1}, \ldots, y_{R-1}\right)$.
- ensures: ulp-nonoverlapping FP expansion $\pi=\left(\pi_{0}, \pi_{1}, \ldots, \pi_{R-1}\right)$.

Let me explain it with an example ...

Example: $n=4, m=3$ and $r=4$

$$
\begin{array}{lllllll}
& & x_{0} & x_{1} & x_{2} & x_{3} \\
& & & y_{0} & y_{1} & y_{2}
\end{array} 土+
$$

Example: $n=4, m=3$ and $r=4$

	x_{0}	$\begin{aligned} & x_{1} \\ & y_{0} \end{aligned}$	$\begin{aligned} & x_{2} \\ & y_{1} \end{aligned}$	$\begin{aligned} & x_{3} \\ & y_{2} \end{aligned}$
	$x_{0} y_{2}$	$x_{1} y_{2}$	$x_{2} y_{2}$	$x_{3} y_{2}$
	$x_{0} y_{1} x_{1} y_{1}$	$x_{2} y_{1}$	$x_{3} y_{1}$	
$x_{0} y_{0}$	$x_{1} y_{0} \quad x_{2} y_{0}$	$x_{3} y_{0}$		
	$\underset{\substack{\left.2 M u l t F M A\left(x_{i}, y_{j}\right) \\ \downarrow \\ \boldsymbol{\downarrow}, E\right)}}{ }$		$\begin{aligned} & \text { ultiplica } \\ & \stackrel{\downarrow}{\perp} \end{aligned}$	

- paper-and-pencil intuition;
- term-times-expansion products, $x_{i} \cdot y$;
- on-the-fly "truncation";
- error correction term, π_{r}.

Example: $n=4, m=3$ and $r=4$

- $\left[\frac{r \cdot p}{b}\right]+2$ containers of size b (s.t. $3 b>2 p$);
- $b+c=p-1$, s.t. we can add 2^{c} numbers without error; (binary $64 \rightarrow b=45$, binary $32 \rightarrow b=18$)
- starting exponent $e=e_{x_{0}}+e_{y_{0}}$;
- each bin's LSB has a fixed weight;

Example: $n=4, m=3$ and $r=4$

- $\left[\frac{r \cdot p}{b}\right]+2$ containers of size b (s.t. $3 b>2 p$);
- $b+c=p-1$, s.t. we can add 2^{c} numbers without error; (binary $64 \rightarrow b=45$, binary $32 \rightarrow b=18$)
- starting exponent $e=e_{x_{0}}+e_{y_{0}}$;
- each bin's LSB has a fixed weight;
- bins initialized with $1.5 \cdot 2^{e-(i+1) b+p-1}$;

Example: $n=4, m=3$ and $r=4$

- $\left[\frac{r \cdot p}{b}\right]+2$ containers of size b (s.t. $3 b>2 p$);
- $b+c=p-1$, s.t. we can add 2^{c} numbers without error; (binary $64 \rightarrow b=45$, binary $32 \rightarrow b=18$)
- starting exponent $e=e_{x_{0}}+e_{y_{0}}$;
- each bin's LSB has a fixed weight;
- bins initialized with $1.5 \cdot 2^{e-(i+1) b+p-1}$;
- the number of leading bits, ℓ;

- accumulation done using a Fast2Sum and addition [Rump09];

Example: $n=4, m=3$ and $r=4$

Example: $n=4, m=3$ and $r=4$

- subtract initial value;

Example: $n=4, m=3$ and $r=4$

- subtract initial value;
- apply renormalization step to B :
- Fast2Sum and branches;
- render the result ulp-nonoverlapping;
- tight error bound:

$$
\begin{aligned}
& \left|x_{0} y_{0}\right| 2^{-(p-1) r_{[1}+(r+1) 2^{-p}+} \\
& \left.\quad+2^{-(p-1)}\left(\frac{-2^{-(p-1)}}{\left(1-2^{-(p-1)}\right)^{2}}+\frac{m+n-r-2}{1-2^{-(p-1)}}\right)\right]
\end{aligned}
$$

Comparison

Table: Worst case FP operation count when the input and output expansions are of size r.

r	2	4	8	16
New algorithm	138	261	669	2103
Priest's mul.[Pri91]	3174	16212	87432	519312

Comparison

Table: Worst case FP operation count when the input and output expansions are of size r.

r	2	4	8	16
New algorithm	138	261	669	2103
Priest's mul.[Pri91]	3174	16212	87432	519312

Table: Performance in MFlops/s for multiplying two FP expansions on a Tesla K40c GPU, using CUDA 7.5 software architecture, running on a single thread of execution. $*$ precision not supported

d_{x}, d_{y}, d_{r}	New algorithm	QD
$2,2,2$	0.027	0.1043
$1,2,2$	0.365	0.1071
$3,3,3$	0.0149	$*$
$2,3,3$	0.0186	$*$
$4,4,4$	0.0103	0.0174
$1,4,4$	0.0215	0.0281
$2,4,4$	0.0142	$*$
$8,8,8$	0.0034	$*$
$4,8,8$	0.0048	$*$
$16,16,16$	0.001	$*$

Conclusions

Available online at: http://homepages.laas.fr/mmjoldes/campary/.

- algorithm with strong regularity;
- based on partial products accumulation;

A new multiplication algorithm for extended precision using floating-point expansions, joint work with J.-M. Muller and, P.Tang. To be presented at IEEE 23rd Symposium on Computer Arithmetic, ARITH 2016.

Conclusions

Available online at: http://homepages.laas.fr/mmjoldes/campary/.

- algorithm with strong regularity;
- based on partial products accumulation;
- uses a fixed-point structure that is floating-point friendly;
- thorough error analysis and tight error bound;

A new multiplication algorithm for extended precision using floating-point expansions, joint work with J.-M. Muller and, P.Tang. To be presented at IEEE 23rd Symposium on Computer Arithmetic, ARITH 2016.

Conclusions

Available online at: http://homepages.laas.fr/mmjoldes/campary/.

- algorithm with strong regularity;
- based on partial products accumulation;
- uses a fixed-point structure that is floating-point friendly;
- thorough error analysis and tight error bound;
- natural fit for GPUs;

A new multiplication algorithm for extended precision using floating-point expansions, joint work with J.-M. Muller and, P.Tang. To be presented at IEEE 23rd Symposium on Computer Arithmetic, ARITH 2016.

Conclusions

Available online at: http://homepages.laas.fr/mmjoldes/campary/.

- algorithm with strong regularity;
- based on partial products accumulation;
- uses a fixed-point structure that is floating-point friendly;
- thorough error analysis and tight error bound;
- natural fit for GPUs;
- proved to be too complex for small precisions;
- performance gains with increased precision.

A new multiplication algorithm for extended precision using floating-point expansions, joint work with J.-M. Muller and, P.Tang. To be presented at IEEE 23rd Symposium on Computer Arithmetic, ARITH 2016.

