A new multiplication algorithm for extended

precision using floating-point expansions

Valentina Popescu, Jean-Michel Muller, Ping Tak Peter Tang

RAIM 2016
28 June

N

<AVPARR *

Target applications

© Need massive parallel computations

— high performance computing using graphics processors — GPUs

@ Need more precision than standard available (up to few hundred bits)

— extend precision using floating-point expansions

1/12

Target applications

© Need massive parallel computations

— high performance computing using graphics processors — GPUs

@ Need more precision than standard available (up to few hundred bits)

— extend precision using floating-point expansions

Chaotic dynamical systems:
o bifurcation analysis,

@ compute periodic orbits (e.g., finding sinks in the
Hénon map, iterating the Lorenz attractor),

o celestial mechanics (e.g., long term stability of the
solar system).

Experimental mathematics: ill-posed SDP problems in

@ computational geometry (e.g., computation of
kissing numbers),

@ quantum chemistry/information,

@ polynomial optimization etc.

1/12

Extended precision

Existing libraries:

@ GNU MPEFR - not ported on GPU;

® GARPREC & CUMP - tuned for big array operations: data generated on host,
operations on device;

o QD & GQD - limited to double-double and quad-double; no correct rounding.

2 /12

Extended precision

Existing libraries:

o GNU MPFR - not ported on GPU;

® GARPREC & CUMP - tuned for big array operations: data generated on host,
operations on device;

o QD & GQD - limited to double-double and quad-double; no correct rounding.

@ support for arbitrary precision;
@ runs both on CPU and GPU;

@ easy to use;

CAMPARY — CudaA Multiple Precision ARithmetic librarY —

2 /12

CAMPARY (CudaA Multiple Precision ARithmetic librarY)

Our approach: multiple-term representation
— floating-point expansions —

3/12

CAMPARY (CudaA Multiple Precision ARithmetic librarY)

Our approach: multiple-term representation
— floating-point expansions —

o Pros:
— use directly available and highly optimized native FP infrastructure;

— straightforwardly portable to highly parallel architectures, such as GPUs;
— sufficiently simple and regular algorithms for addition.

3/12

CAMPARY (CudaA Multiple Precision ARithmetic librarY)

Our approach: multiple-term representation
— floating-point expansions —

o Pros:
— use directly available and highly optimized native FP infrastructure;
— straightforwardly portable to highly parallel architectures, such as GPUs;
— sufficiently simple and regular algorithms for addition.

o Cons:
— more than one representation;
— existing multiplication algorithms do not generalize well for an arbitrary number
of terms;
— difficult rigorous error analysis — lack of thorough error bounds.

3/12

Non-overlapping expansions

R =1.11010011e — 1 can be represented, using a p =5 (in radix 2) system, as:
Less compact

r x(a):o:—‘_l?llO_(')_O:zQ; il R=yo+y1+y2+ys+ys+ys:
21 = 1.0010e — 3 Yo = 1.0000e — 1;
22 = 1.0110e — 6. y1 = 1.0000e — 2;
y2 = 1.0000e — 3;

Most c_on11plalct1R =1Z_0 + 2 ys = 1.0000e — 5;
{ .. 1'10806 _s S 000
z1 = 1.1000e — 8. ys = 1.0000e — 9;

4 /12

Non-overlapping expansions

R =1.11010011e — 1 can be represented, using a p =5 (in radix 2) system, as:

Less compact
R=x0+ x1 + x2:
zo = 1.1000e — 1; R=yo+uyi+y2+ys+ya+ys

21 = 1.0010e — 3; yo = 1.0000e — 1;

@2 = 1.0110¢ — 6. y1 = 1.0000e —2;
y2 = 1.0000¢ — 3;

Most compact R = 2o + 21: 7o — 1.0000¢ — 5.
zo = 1.1101e — 1; .

= 1.1000e — 8 ya = 1.0000e — 8;
aoE ys = 1.0000e — 9;

Solution: the FP expansions are required to be non-overlapping.

Definition: ulp-nonoverlapping.

For an expansion ug, u1, ..., un—1 if for all 0 < ¢ < n, we have |u;| < ulp (ui—1).
Example: p = 5 (in radix 2)
zo = 1.1010e — 2;;
z1 = 1.1101le — 7;

{ T2 = 1.0000e — 11;
: z3 = 1.1000e — 17.

277777777777,

|

4 /12

Non-overlapping expansions

R =1.11010011e — 1 can be represented, using a p =5 (in radix 2) system, as:

Less compact
R=x0+ x1 + x2:
zo = 1.1000e — 1; R=yo+uyi+y2+ys+ya+ys

21 = 1.0010e — 3; yo = 1.0000e — 1;

@2 = 1.0110¢ — 6. y1 = 1.0000e —2;
y2 = 1.0000¢ — 3;

Most compact R = 2o + 21: 7o — 1.0000¢ — 5.
zo = 1.1101e — 1; .

= 1.1000e — 8 ya = 1.0000e — 8;
aoE ys = 1.0000e — 9;

Solution: the FP expansions are required to be non-overlapping.

Definition: ulp-nonoverlapping.

For an expansion ug, u1, ..., un—1 if for all 0 < ¢ < n, we have |u;| < ulp (ui—1).
Example: p = 5 (in radix 2)
zo = 1.1010e — 2;;
z1 = 1.1101le — 7;

{ T2 = 1.0000e — 11;
: z3 = 1.1000e — 17.

277777777777,

|

Restriction: m < 12 for single-precision and n < 39 for double-precision.

4 /12

Error-Free Transforms: Fast2Sum & 2MultFMA

Algorithm 1 (Fast2Sum (a, b)) Requirement:
S < RN(a+b) €q > €p:
z<4 RN(s—a) =
e+ RN(b—z) — Uses 3 FP operations.

return (s, e)

Algorithm 2 (2MultFMA (a, b)) Requirement:

p <+ RN(a-b) €a+ € > emin+Dp—1;
€< fma’(a7b7 _p)

return (p, e) — Uses 2 FP operations.

5 /12

Existing multiplication algorithms

@ Priest’s multiplication [Pri91]:
— very complex and costly;
— based on scalar products;
— uses re-normalization after each step;
— computes the entire result and “truncates” a-posteriori;
— comes with an error bound and correctness proof;

6 /12

Existing multiplication algorithms

@ Priest’s multiplication [Pri91]:
— very complex and costly;
— based on scalar products;
— uses re-normalization after each step;
— computes the entire result and “truncates” a-posteriori;
— comes with an error bound and correctness proof;

@ quad-double multiplication in QD library:
— does not straightforwardly generalize;
— can lead to O(n®) complexity;
— worst case error bound is pessimistic;
— no correctness proof is provided.

6 /12

New multiplication algorithms

@ requires: ulp-nonoverlapping FP expansion z = (zo,x1,...,Zr—1) and
Y= (yO, Yi,. - 7yR71)-
@ ensures: ulp-nonoverlapping FP expansion m = (mo, m1,...,Tr—1).

Let me explain it with an example ...

7 /12

Example: n=4,m =3 and r =4

Lo I T2 T3 =k
Yo (731 Y2
ToY2 T1Y2 T2Y2 T3Y2
ToYr T1Y1 T2Y1 T3Y1
ToYo T1Yo T2Yo T3Yo

8 /12

Example: n=4,m =3 and r =4

i) 1 To T3 *
Yo n Y2
ToY2 T1Y2 T2Y2 T3Y2
ToY1 T1Y1 T2Y1 T3y
ZToYo T1Yo Z2Yo T3Yo_

—— ——
2MultFMA(xi,y;) FP multiplication
(P, E) P

paper-and-pencil intuition;

term-times-expansion products, z; - y;

on-the-fly “truncation”;

error correction term, ..

8/ 12

Example: n=4,m =3 and r =4

b

[“2] + 2 containers of size b (s.t. 3b > 2p);

b4+ c=p—1, s.t. we can add 2° numbers without
error; (binary64 — b = 45, binary32 — b = 18)

starting exponent e = ez, + €yy;

each bin's LSB has a fixed weight;

9/ 12

Example: n=4,m =3 and r =4

€ =€z T ey,

[“2] + 2 containers of size b (s.t. 3b > 2p);

b4+ c=p—1, s.t. we can add 2° numbers without
error; (binary64 — b = 45, binary32 — b = 18)

starting exponent e = ez, + €yy;
each bin's LSB has a fixed weight;

@ bins initialized with 1.5 - 26~ (+Db+p—1.

9/ 12

Example: n=4,m =3 and r =4

€ = €z, +€yu

o [72] + 2 containers of size b (s.t. 3b > 2p);

e b+c=p—1, st we can add 2° numbers without 20 2 9t
error; (binary64 — b = 45, binary32 — b = 18) N

2:2 [P | | E | :

@ starting exponent e = ez, + ey,; : | |

@ each bin’s LSB has a fixed weight; 23 P\ _E__|

i 1 1 1

o bins initialized with 1.5 . 2¢~(i+Db+p—1, : : |
3:2 L P | £ |

1 1 1

@ the number of leading bits, ¢;

@ accumulation done using a Fast2Sum and addition
[Rump09];

9/ 12

Example: n=4,m =3 and r =4

10 / 12

Example: n=4,m =3 and r =4

€= ez t ey,

@ subtract initial value;

10 / 12

Example: n=4,m=3 and r =4

€= ez t ey,

@ subtract initial value;
@ apply renormalization step to B:

— Fast25um and branches;

— render the result wlp-nonoverlapping;
@ tight error bound:

leguol2” P~V 4 (r 4 1)27 P4

_o—(p—1) o
—(p—1) 2 m + n ™ 2
2 ((1—2(1}*1))2 AR)]

10 / 12

Comparison

Table :

Worst case FP operation count when the input and output expansions are of size r.

r 2 4 8 16
New algorithm 138 261 669 2103
Priest’'s mul.[Pri91] || 3174 | 16212 | 87432 | 519312

11 / 12

Comparison

Table : Worst case FP operation count when the input and output expansions are of size 7.

Table : Performance in MFlops/s for multiplying two FP expansions on a Tesla K40c GPU,

r 2 4 8 16
New algorithm 138 261 669 2103
Priest’'s mul.[Pri91] || 3174 | 16212 | 87432 | 519312

using CUDA 7.5 software architecture, running on a single thread of execution. * precision not

supported

dy,dy,dr || New algorithm QD
2,2,2 0.027 0.1043
1,2,2 0.365 0.1071
3,3,3 0.0149 ¥
2,3,3 0.0186 *
4,4,4 0.0103 0.0174
1,4,4 0.0215 0.0281
2,4,4 0.0142 "
8,8,8 0.0034 *
4,8,8 0.0048 *

16,16, 16 0.001 "

11 / 12

Conclusions

NA
< N\

Available online at: http://homepages.laas.fr/mmjoldes/campary/.

@ algorithm with strong regularity;

@ based on partial products accumulation;

A new multiplication algorithm for extended precision using floating-point expansions, joint work
with J.-M. Muller and, P.Tang. To be presented at /EEE 23rd Symposium on Computer Arithmetic, ARITH
2016.

12 /12

Conclusions

NA
< N\

Available online at: http://homepages.laas.fr/mmjoldes/campary/.

@ algorithm with strong regularity;
@ based on partial products accumulation;
@ uses a fixed-point structure that is floating-point friendly;

@ thorough error analysis and tight error bound;

A new multiplication algorithm for extended precision using floating-point expansions, joint work
with J.-M. Muller and, P.Tang. To be presented at /EEE 23rd Symposium on Computer Arithmetic, ARITH
2016.

12 /12

Conclusions

NA
< N\

Available online at: http://homepages.laas.fr/mmjoldes/campary/.

@ algorithm with strong regularity;

@ based on partial products accumulation;

@ uses a fixed-point structure that is floating-point friendly;
@ thorough error analysis and tight error bound;

@ natural fit for GPUs;

A new multiplication algorithm for extended precision using floating-point expansions, joint work
with J.-M. Muller and, P.Tang. To be presented at /EEE 23rd Symposium on Computer Arithmetic, ARITH
2016.

12 /12

Conclusions

NA
< W

Available online at: http://homepages.laas.fr/mmjoldes/campary/.

@ algorithm with strong regularity;

@ based on partial products accumulation;

@ uses a fixed-point structure that is floating-point friendly;
@ thorough error analysis and tight error bound;

@ natural fit for GPUs;

proved to be too complex for small precisions;

@ performance gains with increased precision.

A new multiplication algorithm for extended precision using floating-point expansions, joint work
with J.-M. Muller and, P.Tang. To be presented at /EEE 23rd Symposium on Computer Arithmetic, ARITH
2016.

12 /12

