Root finding over finite fields
using Graeffe transforms

Bruno Grenet Joris van der Hoeven & Grégoire Lecerf
LIRMM CNRS - LIX
U. Montpellier Ecole polytechnique

RAIM — Banyuls — June 29, 2016

Statement of the problem

Root finding over finite fields

Given f € Fy[X], compute its roots, that is {a € F; : f(a) = 0}.

Input size: (14 d) logg where d = deg(f)

1/15

Statement of the problem

Root finding over finite fields

Given f € Fy[X], compute its roots, that is {a € F; : f(a) = 0}.

Input size: (14 d) logg where d = deg(f)

- Assumption (A): f is monic, separable, splits over [,

f(0) # 0:

) =[Ix-a), ek, a#q

=1

|

(easy reduction: f <+ gcd(f, X9~ — 1))

1/15

Statement of the problem

Root finding over finite fields

Given f € Fy[X], compute its roots, that is {a € F; : f(a) = 0}.

Input size: (14 d) logg where d = deg(f)

- Assumption (A): f is monic, separable, splits over [,

f(0) # 0:

d

) =[Ix-a), ek, a#q

=1

(easy reduction: f <+ gcd(f, X9~ — 1))

- Motivated by sparse interpolation

[van der Hoeven & Lecerf, 2014]

1/15

State of the art & settings

- No deterministic polytime algorithm is known (even
under ERH)

2/15

State of the art & settings

- No deterministic polytime algorithm is known (even
under ERH)
- Randomized algorithm: O(d log? g) in average [Rabin (1980)]

2/15

State of the art & settings

- No deterministic polytime algorithm is known (even
under ERH)

- Randomized algorithm: O(d log? g) in average [Rabin (1980)]

- Many factorization alg. ~» no improvement for root finding
[Cantor-Zassenhaus (1981), Kaltofen-Shoup (1998), Kedlaya-Umans (2011)]

2/15

State of the art & settings

- No deterministic polytime algorithm is known (even
under ERH)
- Randomized algorithm: O(d log? g) in average [Rabin (1980)]
- Many factorization alg. ~» no improvement for root finding
[Cantor-Zassenhaus (1981), Kaltofen-Shoup (1998), Kedlaya-Umans (2011)]
- Better complexity bounds when g —1is sufficiently smooth
[Moenck (1977), von zur Gathen (1987), Mignotte-Schnorr (1988),
Ronyai (1989), Shoup (1991, 1992), Zratek (2010)]

2/15

State of the art & settings

- No deterministic polytime algorithm is known (even
under ERH)
- Randomized algorithm: O(d log? g) in average [Rabin (1980)]
- Many factorization alg. ~» no improvement for root finding
[Cantor-Zassenhaus (1981), Kaltofen-Shoup (1998), Kedlaya-Umans (2011)]
- Better complexity bounds when g —1is sufficiently smooth
[Moenck (1977), von zur Gathen (1987), Mignotte-Schnorr (1988),
Ronyai (1989), Shoup (1991, 1992), Zratek (2010)]

- FFT finite field: p =M - 2" 4+ 1 with M = O(log p)
- Adapt old algorithms
- New technique based on Graeffe transforms
- Fast implementations

2/15

Adapt old algorithms

Rabin's algorithm

[- a)=xT -

acRy

3/15

Rabin's algorithm

I x-a)=x""—1= (% -)T +)

ae]F;

3/15

Rabin's algorithm

I x-a)=x""—1= (% -)T +)

ae]F;

3/15

Rabin's algorithm

I x-a)=x""—1= (% -)T +)

ae]F;

- With some luck, gcd(f,Xp%1 -1 ¢{1f}

3/15

Rabin's algorithm

I x-a)=x""—1= (% -)T +)

ae]F;

- With some luck, gcd(f,Xp%1 -1 ¢{1f}
- Push your luck: gcd(f, (X—FT)qu — 1) for
some random 7 € [,

3/15

Rabin's algorithm

I x-a)=x""—1= (% -)T +)

acRy

- With some luck, gcd(f,Xp%1 -1 ¢{1f}
- Push your luck: gcd(f, (X—FT)qu — 1) for
some random 7 € [,

deg (gcd(f, X+71)% — 1)) ~d/2

3/15

Rabin's algorithm

- [T -0 =%~ —1= (X7 -7 +)

acRy

- With some luck, gcd(f,Xp%1 -1 ¢{1f}
- Push your luck: gcd(f, (X+T)p771 — 1) for
some random 7 € [,

deg (gcd(f, X+71)% — 1)) ~d/2

Randomized algorithm

The roots of f € F,[X] can be computed in
expected time O(d log? p).

3/15

Modified Rabin's algorithm (for FFT finite fields)

261
X1 _1= H(XMW*Z — &', where ¢ is primitive of order 2.
i=0

4/15

Modified Rabin's algorithm (for FFT finite fields)

= 5’), where ¢ is primitive of order 2¢.

4/15

Modified Rabin's algorithm (for FFT finite fields)

22
X1 _1= H(XMW*Z — &', where ¢ is primitive of order 2.
i=0
ged(f, (X +)M —¢9)
ged(f, (X + 7)™ — ¢) degrees
~ d/2*

ged (f, (x + 72" =€)

ged(f, (X +)" — &3)

4/15

Modified Rabin's algorithm (for FFT finite fields)

261
X1 _1= H(szm*f — &', where ¢ is primitive of order 2.
i=0

ng(f. (X+ l‘_)ﬂaiz"‘*' o L(J)

d(f. (X Mam=t]
ged(f, (X + 7)™~ €) P—

. , ~ d/2¢
ged(f, (X-+ 1) —)

ged(f, (X +)" — &3)

Worthwhile in practice for small / = 2.3, ...

4/15

New technique: Graeffe transform

The Graeffe transform

Let f(X) = [[;(X — o) € Fp[X].
fOOA(=X) = H(X — oi)(—X — o) = (—1)° H(X2 —af)

I

5/15

The Graeffe transform

Let f(X) = [[;(X — o) € Fp[X].
fOOA(=X) = H(X — oi)(—X — o) = (—1)° H(X2 —af)

I

Definition

Ga()(X) = IT;(X — o) is the Graeffe transform of f.

5/15

The Graeffe transform

Let f(X) = [[;(X — o) € Fp[X].
fOOA(=X) = H(X — oi)(—X — o) = (—1)° H(X2 —af)

I

Definition

Ga()(X) = IT;(X — o) is the Graeffe transform of f.

{Gp(]‘)(X) = [[;(X — o) is the Graeffe transform of order p of f. }

5/15

The Graeffe transform

Let f(X) = [[;(X — o) € Fp[X].
fOOA(=X) = H(X — oi)(—X — o) = (—1)° H(X2 —af)

I

Definition

Ga()(X) = IT;(X — o) is the Graeffe transform of f.

{Gp(]‘)(X) = [[;(X — o) is the Graeffe transform of order p of f. }

Remarks:
* Gpip, = Gp, 0 Gp,, and in particular Gye = Gy o --- 0 Gy

* Gp(A) = TLX = af ™) = (X = 1)

5/15

Effect of Graeffe transforms

6/15

Effect of Graeffe transforms

6/15

Effect of Graeffe transforms

6/15

Using Graeffe transforms

GZ Gz Gz Gz
f g 92 9m

7/15

Using Graeffe transforms

GZ Gz Gz Gz
f g 92 9m

I

Zm

cZm C{CT0<i<M -1} (¢: primitive element of F;)

7/15

Using Graeffe transforms

GZ Gz Gz Gz
f g 92 9m
Z(f) /1 7> Z

cZm C{CT0<i<M -1} (¢: primitive element of F;)

7/15

Using Graeffe transforms

GZ Gz Gz Gz
f g 92 9m
Z(f) /1 7> Z

cZm C{CT0<i<M -1} (¢: primitive element of F;)
- For B € Zpyq,

- ged(gr, X* — B) = {

X — q (simple root)
(X —a;)(X—q;) (multiple root)

7/15

Using Graeffe transforms

62 Gz Gz Gz
f g 92 9m
Z(f) /1 7> Z

c Zn C{C?"0<i<M -1} (¢: primitive element of F;)
- For B € Zpyq,
X —a; (simple root)
- ged(ge X2 —) = | °
(X —a;)(X—q;) (multiple root)
- Multiple roots: If 8 = (¢,
Qj, qf € {¢°® l.g(y 2°M) 2}~

7/15

Deterministic complexity

Theorem

Given f € [y [X] satisfying (A), the irreducible factorization of
(g — 1) and a primitive element of Fz, the roots of f can be
computed in time

O(v/S1(g — 1)d log? g) + (d log? g)'+°™

where Si(g — 1) is the largest factor of g — 1.

8/15

Deterministic complexity

Theorem

Given f € [y [X] satisfying (A), the irreducible factorization of
(g — 1) and a primitive element of Fz, the roots of f can be
computed in time

O(v/S1(g — 1)d log? g) + (d log? g)'+°™

where Si(g — 1) is the largest factor of g — 1.

- Based on:
- Modular composition [Kedlaya-Umans (2008)]
- Fast discrete logarithms in Fy [Pohlig-Hellman (1978)]
- Computation of roots a la Pollard-Strassen [Shoup (1991)]

8/15

Deterministic complexity

Theorem

Given f € [y [X] satisfying (A), the irreducible factorization of
(g — 1) and a primitive element of Fz, the roots of f can be
computed in time

O(v/S1(g — 1)d log? g) + (d log? g)'+°™

where Si(g — 1) is the largest factor of g — 1.

- Based on:
- Modular composition [Kedlaya-Umans (2008)]
- Fast discrete logarithms in Fy [Pohlig-Hellman (1978)]
- Computation of roots a la Pollard-Strassen [Shoup (1991)]

-+ Refines Shoup's complexity bounds

8/15

Randomization

Tangent Graeffe transform

Definition

The tangent Graeffe transform of order = of f € F,[X] is

G (f + ef') € (Bplel/(*) X

9/15

Tangent Graeffe transform

Definition

The tangent Graeffe transform of order = of f € F,[X] is

G (f + ef') € (Bplel/(*) X

Remarks:
* (f+ef)X) =X +e)
* Go(f + ¢f') = Ga(f) + € with g(X*) = fIX)F (—X) + f(=X)F (X)

9/15

Tangent Graeffe transform

Definition

The tangent Graeffe transform of order = of f € F,[X] is

G (f + ef') € (Bplel/(*) X

Remarks:
* (f+ef)X) =X +e)
* Go(f + ¢f') = Ga(f) + € with g(X*) = fIX)F (—X) + f(=X)F (X)

Lemma

Let g + G = G,e(f + £f). A nonzero root 3 of g is simple iff
g() # 0. The corresponding root of fis a = 2¢4g’(8)/9(B).

9/15

Randomized algorithm

Goal: Ensure many simple roots

- Replace f by f-(X) = f(X+ 7) for a random 7 € F,.

10/15

Randomized algorithm

Goal: Ensure many simple roots

- Replace f by f-(X) = f(X+ 7) for a random 7 € F,.

Lemma

If 2¢ < d(d 1 , Go¢(f;) has no multiple root with prob. > 1/2.

10/15

Randomized algorithm

Goal: Ensure many simple roots

- Replace f by f-(X) = f(X+ 7) for a random 7 € F,.

Lemma

If 2¢ < d(d 1 , Go¢(f;) has no multiple root with prob. > 1/2.

Gy Gy . G2 Gy _
fX+7+e)— + — gr+egy— ~ — gm+ely

10/15

Randomized algorithm

Goal: Ensure many simple roots

- Replace f by f-(X) = f(X+ 7) for a random 7 € F,.

Lemma \
If 2¢ < d(d 1 , Go¢(f;) has no multiple root with prob. > 1/2.

Gy Gy . G2 Gy _
fX+7+e)— + — gr+egy— ~ — gm+ely

Zm

{€e:0<e<M}
10/15

Randomized algorithm

Goal: Ensure many simple roots

- Replace f by f-(X) = f(X+ 7) for a random 7 € F,.

Lemma \
If 2¢ < d(d 1 , Go¢(f;) has no multiple root with prob. > 1/2.

Gy Gy . G2 Gy _
fX+7+e)— + — gr+egy— ~ — gm+ely

7 Zm
(€ 0<e<M}

10/15

Randomized algorithm

Goal: Ensure many simple roots

- Replace f by f-(X) = f(X+ 7) for a random 7 € F,.

Lemma \
If 2¢ < d(d 1 , Go¢(f;) has no multiple root with prob. > 1/2.

Gy Gy . G2 Gy _
fX+7+e)— + — gr+egy— ~ — gm+ely

ZO Z[Zm
N simple roots N
Z {¢e:0<e<M}

10/15

Randomized algorithm

Goal: Ensure many simple roots

- Replace f by f-(X) = f(X+ 7) for a random 7 € F,.

Lemma \
If 2¢ < d(d 1 , Go¢(f;) has no multiple root with prob. > 1/2.

Gy Gy . G2 Gy _
fX+7+e)— + — gr+egy— ~ — gm+ely

recursive call:

f/ HaGZO (X - Oé)

ZO Z/ Zm
N simple roots N
Z(f) {€¢:0<e< M}
10/15

Randomized complexity

/Theorem

Given f € Fp[X] satisfying (A) and a primitive element of F;, the
randomized algorithm runs in expected time O(d log” p), for
p=M-2" +1with M = O(logp).

11/15

Randomized complexity

Theorem

Given f € Fp[X] satisfying (A) and a primitive element of F, the
randomized algorithm runs in expected time O(d log” p), for
p=M-2" +1with M = O(logp).

- Same asymptotic as Rabin's algorithm
- Better efficiency in practice

- Primitive elements easy to compute in practice

11/15

Heuristic algorithm

Heuristic

If 2¢ ~ p/d, Goe(f(X + 7)) has Q(d) simple roots with probability
> 1/2, for a random 7 € F,.

Justification: holds for a random f rather than f(X + 7).

12/15

Heuristic algorithm

Heuristic

If 2¢ ~ p/d, Goe(f(X + 7)) has Q(d) simple roots with probability
> 1/2, for a random 7 € F,.

Justification: holds for a random f rather than f(X + 7).

Gzé _
fiX+7+¢) ge + €0,

12/15

Heuristic algorithm

Heuristic

If 2¢ ~ p/d, Goe(f(X + 7)) has Q(d) simple roots with probability
> 1/2, for a random 7 € F,.

Justification: holds for a random f rather than f(X + 7).

Gzé _
fiX+7+¢) ge + €0,

12/15

Heuristic algorithm

Heuristic

If 2¢ ~ p/d, Goe(f(X + 7)) has Q(d) simple roots with probability
> 1/2, for a random 7 € F,.

Justification: holds for a random f rather than f(X + 7).

Gzé _
fiX+7+¢) ge + €0,

simple roots

12/15

Heuristic algorithm

Heuristic

If 2¢ ~ p/d, Goe(f(X + 7)) has Q(d) simple roots with probability
> 1/2, for a random 7 € F,.

Justification: holds for a random f rather than f(X + 7).

Gz[_
fiX+7+¢) ge + €0,

recursive call:

f/ HaEZO (X - Oé)

simple roots

12/15

Heuristic complexity

Theorem

Suppose that f is chosen at random in Fy[X] or that the
heuristic holds. Given a primitive element of ¥, the heuristic
algorithm runs in expected time O(d log® p), for p =M - 27 +1
with M = O(logp).

13/15

Running times

p=7-2641
| »

—o— FLINT

25 + —e— NTL
—o— MMX (randomized alg.) b

20 | —— mmx (heuristic alg.)

14 16 18
14/15

12
Degree in log scale

10

p=5-2%+41
’
—@ FLINT /
400 | —e— MMX (randomized alg.)

—e— MMX (modified Rabin's alg.)
" —e— mmx (heuristic alg.)
= 300
)
©)
%
> 200 /?
£ | /
= /

8 10 12 14 16 18
Degree in log scale

14/15

Conclusion

- Revisit classical algorithms for FFT finite fields

15/15

Conclusion

- Revisit classical algorithms for FFT finite fields
- New approach using Graeffe transforms

v deterministic complexity bounds
v probabilistic complexity bounds
v/ running times

15/15

Conclusion

- Revisit classical algorithms for FFT finite fields
- New approach using Graeffe transforms

v deterministic complexity bounds
v probabilistic complexity bounds
v/ running times

+ Source code in C++ within MATHEMAGIX

15/15

Conclusion

- Revisit classical algorithms for FFT finite fields
- New approach using Graeffe transforms

v deterministic complexity bounds
v probabilistic complexity bounds
v/ running times

+ Source code in C++ within MATHEMAGIX

- Not the bottleneck anymore for sparse interpolation

15/15

Conclusion

- Revisit classical algorithms for FFT finite fields
- New approach using Graeffe transforms

v deterministic complexity bounds
v probabilistic complexity bounds
v/ running times

- Source code in C++ within MATHEMAGIX
- Not the bottleneck anymore for sparse interpolation
- Open questions:

? Deterministic alg.: use of tangent Graeffe transforms

? Heuristic alg.: Graeffe transform of order 2¢
? Prove the heuristic

15/15

Conclusion

- Revisit classical algorithms for FFT finite fields
- New approach using Graeffe transforms

v deterministic complexity bounds

v probabilistic complexity bounds

v/ running times
- Source code in C++ within MATHEMAGIX
- Not the bottleneck anymore for sparse interpolation
- Open questions:

? Deterministic alg.: use of tangent Graeffe transforms

? Heuristic alg.: Graeffe transform of order 2¢
? Prove the heuristic

Merci de votre attention !

15/15

	Adapt old algorithms
	New technique: Graeffe transform
	Randomization
	Running times

