Root finding over finite fields using Graeffe transforms

<u>Bruno Grenet</u>	Joris van der Hoeven & Grégoire Lecerf
LIRMM	CNRS – LIX
U. Montpellier	École polytechnique

RAIM — Banyuls — June 29., 2016

Statement of the problem

Root finding over finite fields

Given $f \in \mathbb{F}_q[X]$, compute its roots, that is $\{\alpha \in \mathbb{F}_q : f(\alpha) = 0\}$.

Input size: $(1 + d) \log q$ where $d = \deg(f)$

Statement of the problem

Root finding over finite fields

Given $f \in \mathbb{F}_q[X]$, compute its roots, that is $\{\alpha \in \mathbb{F}_q : f(\alpha) = 0\}$.

Input size: $(1 + d) \log q$ where $d = \deg(f)$

• Assumption (A): f is monic, separable, splits over \mathbb{F}_q , $f(0) \neq 0$:

$$f(X) = \prod_{i=1}^{d} (X - \alpha_i), \quad \alpha_i \in \mathbb{F}_q^*, \quad \alpha_i \neq \alpha_j$$

(easy reduction: $f \leftarrow gcd(f, X^{q-1} - 1))$

Statement of the problem

Root finding over finite fields

Given $f \in \mathbb{F}_q[X]$, compute its roots, that is $\{\alpha \in \mathbb{F}_q : f(\alpha) = 0\}$.

Input size: $(1 + d) \log q$ where $d = \deg(f)$

• Assumption (A): f is monic, separable, splits over \mathbb{F}_q , $f(0) \neq 0$:

$$f(X) = \prod_{i=1}^{d} (X - \alpha_i), \quad \alpha_i \in \mathbb{F}_q^*, \quad \alpha_i \neq \alpha_j$$

(easy reduction: $f \leftarrow gcd(f, X^{q-1} - 1))$

• Motivated by sparse interpolation

[van der Hoeven & Lecerf, 2014]

• No deterministic polytime algorithm is known (even under ERH)

- No deterministic polytime algorithm is known (even under ERH)
- Randomized algorithm: $\tilde{O}(d \log^2 q)$ in average [Rabin (1980)]

- No deterministic polytime algorithm is known (even under ERH)
- Randomized algorithm: $\tilde{O}(d \log^2 q)$ in average [Rabin (1980)]
- Many factorization alg. → no improvement for root finding [Cantor-Zassenhaus (1981), Kaltofen-Shoup (1998), Kedlaya-Umans (2011)]

- No deterministic polytime algorithm is known (even under ERH)
- Randomized algorithm: $\tilde{O}(d \log^2 q)$ in average [Rabin (1980)]
- Many factorization alg. → no improvement for root finding [Cantor-Zassenhaus (1981), Kaltofen-Shoup (1998), Kedlaya-Umans (2011)]
- Better complexity bounds when q 1 is sufficiently smooth [Moenck (1977), von zur Gathen (1987), Mignotte-Schnorr (1988), Rónyai (1989), Shoup (1991, 1992), Źrałek (2010)]

- No deterministic polytime algorithm is known (even under ERH)
- Randomized algorithm: $\tilde{O}(d \log^2 q)$ in average [Rabin (1980)]
- Many factorization alg. → no improvement for root finding [Cantor-Zassenhaus (1981), Kaltofen-Shoup (1998), Kedlaya-Umans (2011)]
- Better complexity bounds when q 1 is sufficiently smooth [Moenck (1977), von zur Gathen (1987), Mignotte-Schnorr (1988), Rónyai (1989), Shoup (1991, 1992), Źrałek (2010)]
- **FFT finite field**: $p = M \cdot 2^m + 1$ with $M = O(\log p)$
 - Adapt old algorithms
 - New technique based on Graeffe transforms
 - Fast implementations

Adapt old algorithms

$$\prod_{\alpha \in \mathbb{F}_p^*} (X - \alpha) = X^{p-1} - 1$$

$$\prod_{\alpha \in \mathbb{F}_p^*} (X - \alpha) = X^{p-1} - 1 = (X^{\frac{p-1}{2}} - 1)(X^{\frac{p-1}{2}} + 1)$$

$$\cdot \prod_{\alpha \in \mathbb{F}_p^*} (X - \alpha) = X^{p-1} - 1 = (X^{\frac{p-1}{2}} - 1)(X^{\frac{p-1}{2}} + 1)$$

$$\prod_{\alpha \in \mathbb{F}_p^*} (X - \alpha) = X^{p-1} - 1 = (X^{\frac{p-1}{2}} - 1)(X^{\frac{p-1}{2}} + 1)$$

• With some luck, $gcd(f, X^{\frac{p-1}{2}} - 1) \notin \{1, f\}$.

$$\prod_{\alpha \in \mathbb{F}_p^*} (X - \alpha) = X^{p-1} - 1 = (X^{\frac{p-1}{2}} - 1)(X^{\frac{p-1}{2}} + 1)$$

- With some luck, $gcd(f, X^{\frac{p-1}{2}} 1) \notin \{1, f\}.$
- Push your luck: $gcd(f, (X + \tau)^{\frac{p-1}{2}} 1)$ for some random $\tau \in \mathbb{F}_p$

$$\prod_{\alpha \in \mathbb{F}_p^*} (X - \alpha) = X^{p-1} - 1 = (X^{\frac{p-1}{2}} - 1)(X^{\frac{p-1}{2}} + 1)$$

- With some luck, $gcd(f, X^{\frac{p-1}{2}} 1) \notin \{1, f\}.$
- Push your luck: $gcd(f, (X + \tau)^{\frac{p-1}{2}} 1)$ for some random $\tau \in \mathbb{F}_p$

 $\deg\left(\gcd(f,(X+\tau)^{\frac{p-1}{2}}-1)\right)\simeq d/2$

$$\prod_{\alpha \in \mathbb{F}_p^*} (X - \alpha) = X^{p-1} - 1 = (X^{\frac{p-1}{2}} - 1)(X^{\frac{p-1}{2}} + 1)$$

- With some luck, $gcd(f, X^{\frac{p-1}{2}} 1) \notin \{1, f\}.$
- Push your luck: $gcd(f, (X + \tau)^{\frac{p-1}{2}} 1)$ for some random $\tau \in \mathbb{F}_p$

$$\deg\left(\gcd(f,(X+\tau)^{\frac{p-1}{2}}-1)\right)\simeq d/2$$

Randomized algorithm

The roots of $f \in \mathbb{F}_p[X]$ can be computed in expected time $\tilde{O}(d \log^2 p)$.

$$X^{p-1} - 1 = \prod_{i=0}^{2^{\ell}-1} (X^{M2^{m-\ell}} - \xi^i), \text{ where } \xi \text{ is primitive of order } 2^{\ell}.$$

Worthwhile in practice for small $\ell = 2, 3, ...$

New technique: Graeffe transform

Let
$$f(X) = \prod_i (X - \alpha_i) \in \mathbb{F}_p[X].$$

$$f(X)f(-X) = \prod_i (X - \alpha_i)(-X - \alpha_i) = (-1)^d \prod_i (X^2 - \alpha_i^2)$$

Let
$$f(X) = \prod_i (X - \alpha_i) \in \mathbb{F}_p[X].$$

$$f(X)f(-X) = \prod_i (X - \alpha_i)(-X - \alpha_i) = (-1)^d \prod_i (X^2 - \alpha_i^2)$$

Definition

 $G_2(f)(X) = \prod_i (X - \alpha_i^2)$ is the **Graeffe transform** of *f*.

Let
$$f(X) = \prod_i (X - \alpha_i) \in \mathbb{F}_p[X].$$

$$f(X)f(-X) = \prod_i (X - \alpha_i)(-X - \alpha_i) = (-1)^d \prod_i (X^2 - \alpha_i^2)$$

Definition

 $G_2(f)(X) = \prod_i (X - \alpha_i^2)$ is the **Graeffe transform** of *f*.

 $G_{\rho}(f)(X) = \prod_{i} (X - \alpha_{i}^{\rho})$ is the **Graeffe transform of order** ρ of f.

Let
$$f(X) = \prod_i (X - \alpha_i) \in \mathbb{F}_p[X].$$

$$f(X)f(-X) = \prod_i (X - \alpha_i)(-X - \alpha_i) = (-1)^d \prod_i (X^2 - \alpha_i^2)$$

Definition

$$G_2(f)(X) = \prod_i (X - \alpha_i^2)$$
 is the **Graeffe transform** of *f*.

 $G_{\rho}(f)(X) = \prod_{i} (X - \alpha_{i}^{\rho})$ is the **Graeffe transform of order** ρ of f.

Remarks:

•
$$G_{\rho_1\rho_2} = G_{\rho_1} \circ G_{\rho_2}$$
, and in particular $G_{2^{\ell}} = G_2 \circ \cdots \circ G_2$

•
$$G_{p-1}(f)(X) = \prod_i (X - \alpha_i^{p-1}) = (X - 1)^d$$

Effect of Graeffe transforms

Effect of Graeffe transforms

Effect of Graeffe transforms

• $Z_m \subseteq \{\zeta^{i2^m} : 0 \le i \le M - 1\}$ (ζ : primitive element of \mathbb{F}_p^*)

• $Z_m \subseteq \{\zeta^{i2^m} : 0 \le i \le M - 1\}$ (ζ : primitive element of \mathbb{F}_p^*)

- $Z_m \subseteq \{\zeta^{i2^m} : 0 \le i \le M 1\}$ (ζ : primitive element of \mathbb{F}_p^*)
- For $\beta \in Z_{k+1}$,

•
$$gcd(g_k, X^2 - \beta) = \begin{cases} X - \alpha_i & (simple root) \\ (X - \alpha_i)(X - \alpha_j) & (multiple root) \end{cases}$$

- $Z_m \subseteq \{\zeta^{i2^m} : 0 \le i \le M 1\}$ (ζ : primitive element of \mathbb{F}_p^*)
- For $\beta \in Z_{k+1}$,

•
$$gcd(g_k, X^2 - \beta) = \begin{cases} X - \alpha_i & (simple root) \\ (X - \alpha_i)(X - \alpha_j) & (multiple root) \end{cases}$$

• Multiple roots: If $\beta = \zeta^e$,

 $\alpha_i, \alpha_j \in \{\zeta^{e/2}, \zeta^{(e+2^m M)/2}\}$

Theorem

Given $f \in \mathbb{F}_q[X]$ satisfying (A), the irreducible factorization of (q-1) and a primitive element of \mathbb{F}_q^* , the roots of f can be computed in time

 $\tilde{O}(\sqrt{S_1(q-1)}d\log^2 q) + (d\log^2 q)^{1+o(1)}$

where $S_1(q-1)$ is the largest factor of q-1.

Theorem

Given $f \in \mathbb{F}_q[X]$ satisfying (A), the irreducible factorization of (q-1) and a primitive element of \mathbb{F}_q^* , the roots of f can be computed in time

 $\tilde{O}(\sqrt{S_1(q-1)}d\log^2 q) + (d\log^2 q)^{1+o(1)}$

where $S_1(q-1)$ is the largest factor of q-1.

- Based on:
 - Modular composition
 [Kedlaya-Umans (2008)]
 - Fast discrete logarithms in \mathbb{F}_q^* [Pohlig-Hellman (1978)]
 - Computation of roots à la Pollard-Strassen [Shoup (1991)]

Theorem

Given $f \in \mathbb{F}_q[X]$ satisfying (A), the irreducible factorization of (q-1) and a primitive element of \mathbb{F}_q^* , the roots of f can be computed in time

 $\tilde{O}(\sqrt{S_1(q-1)}d\log^2 q) + (d\log^2 q)^{1+o(1)}$

where $S_1(q-1)$ is the largest factor of q-1.

- Based on:
 - Modular composition
 [Kedlaya-Umans (2008)]
 - Fast discrete logarithms in \mathbb{F}_q^* [Pohlig-Hellman (1978)]
 - Computation of roots à la Pollard-Strassen
 [Shoup (1991)]
- Refines Shoup's complexity bounds

Randomization

Tangent Graeffe transform

Definition

The tangent Graeffe transform of order π of $f \in \mathbb{F}_p[X]$ is

$$G_{\pi}(f + \varepsilon f') \in (\mathbb{F}_{\rho}[\varepsilon]/\langle \varepsilon^2 \rangle)[X].$$

Definition

The tangent Graeffe transform of order π of $f \in \mathbb{F}_p[X]$ is

$$G_{\pi}(f + \varepsilon f') \in (\mathbb{F}_{p}[\varepsilon]/\langle \varepsilon^{2} \rangle)[X].$$

Remarks:

•
$$(f + \varepsilon f')(X) = f(X + \varepsilon)$$

• $G_2(f + \varepsilon f') = G_2(f) + \varepsilon \overline{g}$ with $\overline{g}(X^2) = f(X)f'(-X) + f(-X)f'(X)$

Definition

The tangent Graeffe transform of order π of $f \in \mathbb{F}_p[X]$ is

$$G_{\pi}(f + \varepsilon f') \in (\mathbb{F}_{\rho}[\varepsilon]/\langle \varepsilon^2 \rangle)[X].$$

Remarks:

•
$$(f + \varepsilon f')(X) = f(X + \varepsilon)$$

• $G_2(f + \varepsilon f') = G_2(f) + \varepsilon \overline{g}$ with $\overline{g}(X^2) = f(X)f'(-X) + f(-X)f'(X)$

Lemma

Let $g + \varepsilon \overline{g} = G_{2^{\ell}}(f + \varepsilon f')$. A nonzero root β of g is simple iff $\overline{g}(\beta) \neq 0$. The corresponding root of f is $\alpha = 2^{\ell} \beta g'(\beta) / \overline{g}(\beta)$.

Goal: Ensure many simple roots

• Replace f by $f_{\tau}(X) = f(X + \tau)$ for a random $\tau \in \mathbb{F}_{p}$.

Goal: Ensure many simple roots

• Replace f by $f_{\tau}(X) = f(X + \tau)$ for a random $\tau \in \mathbb{F}_p$.

Lemma

If $2^{\ell} \leq \frac{p-1}{d(d-1)}$, $G_{2^{\ell}}(f_{\tau})$ has no multiple root with prob. $\geq 1/2$.

Goal: Ensure many simple roots

• Replace f by $f_{\tau}(X) = f(X + \tau)$ for a random $\tau \in \mathbb{F}_p$.

If
$$2^{\ell} \leq \frac{p-1}{d(d-1)}$$
, $G_{2^{\ell}}(f_{\tau})$ has **no multiple root** with prob. $\geq 1/2$.

$$f(X + \tau + \varepsilon) \xrightarrow{G_2} \cdots \xrightarrow{G_2} g_\ell + \varepsilon \overline{g}_\ell \xrightarrow{G_2} \cdots \xrightarrow{G_2} g_m + \varepsilon \overline{g}_m$$

Goal: Ensure many simple roots

• Replace f by $f_{\tau}(X) = f(X + \tau)$ for a random $\tau \in \mathbb{F}_p$.

If
$$2^{\ell} \leq \frac{p-1}{d(d-1)}$$
, $G_{2^{\ell}}(f_{\tau})$ has **no multiple root** with prob. $\geq 1/2$.

Goal: Ensure many simple roots

• Replace f by $f_{\tau}(X) = f(X + \tau)$ for a random $\tau \in \mathbb{F}_p$.

If
$$2^{\ell} \leq \frac{p-1}{d(d-1)}$$
, $G_{2^{\ell}}(f_{\tau})$ has **no multiple root** with prob. $\geq 1/2$.

Goal: Ensure many simple roots

• Replace f by $f_{\tau}(X) = f(X + \tau)$ for a random $\tau \in \mathbb{F}_p$.

If
$$2^{\ell} \leq \frac{p-1}{d(d-1)}$$
, $G_{2^{\ell}}(f_{\tau})$ has **no multiple root** with prob. $\geq 1/2$.

Goal: Ensure many simple roots

• Replace f by $f_{\tau}(X) = f(X + \tau)$ for a random $\tau \in \mathbb{F}_p$.

If
$$2^{\ell} \leq \frac{p-1}{d(d-1)}$$
, $G_{2^{\ell}}(f_{\tau})$ has **no multiple root** with prob. $\geq 1/2$.

$$f(X + \tau + \varepsilon) \xrightarrow{G_2} \cdots \xrightarrow{G_2} g_\ell + \varepsilon \overline{g}_\ell \xrightarrow{G_2} \cdots \xrightarrow{G_2} g_m + \varepsilon \overline{g}_m$$

$$\left(\begin{array}{ccc} \text{recursive call:} \\ f/\prod_{\alpha \in Z_0} (X - \alpha) \\ Z_0 \xleftarrow{} \\ \text{simple roots} \end{array} \xrightarrow{Z_\ell} \xleftarrow{} \cdots \xleftarrow{} Z_m \\ \{\xi^e : 0 \leq e < M\} \end{array} \right)$$

Theorem

Given $f \in \mathbb{F}_p[X]$ satisfying (A) and a primitive element of \mathbb{F}_p^* , the randomized algorithm runs in **expected time** $\tilde{O}(d \log^2 p)$, for $p = M \cdot 2^m + 1$ with $M = O(\log p)$.

Theorem

Given $f \in \mathbb{F}_p[X]$ satisfying (A) and a primitive element of \mathbb{F}_p^* , the randomized algorithm runs in **expected time** $\tilde{O}(d \log^2 p)$, for $p = M \cdot 2^m + 1$ with $M = O(\log p)$.

- Same asymptotic as Rabin's algorithm
- \cdot Better efficiency in practice
- Primitive elements easy to compute in practice

If $2^{\ell} \simeq p/d$, $G_{2^{\ell}}(f(X + \tau))$ has $\Omega(d)$ simple roots with probability $\geq 1/2$, for a random $\tau \in \mathbb{F}_p$.

If $2^{\ell} \simeq p/d$, $G_{2^{\ell}}(f(X + \tau))$ has $\Omega(d)$ simple roots with probability $\geq 1/2$, for a random $\tau \in \mathbb{F}_p$.

$$f(X + \tau + \varepsilon) \xrightarrow{G_{2^{\ell}}} g_{\ell} + \varepsilon \overline{g}_{\ell}$$

If $2^{\ell} \simeq p/d$, $G_{2^{\ell}}(f(X + \tau))$ has $\Omega(d)$ simple roots with probability $\geq 1/2$, for a random $\tau \in \mathbb{F}_p$.

$$f(X + \tau + \varepsilon) \xrightarrow{G_{2^{\ell}}} g_{\ell} + \varepsilon \overline{g}_{\ell}$$

If $2^{\ell} \simeq p/d$, $G_{2^{\ell}}(f(X + \tau))$ has $\Omega(d)$ simple roots with probability $\geq 1/2$, for a random $\tau \in \mathbb{F}_p$.

If $2^{\ell} \simeq p/d$, $G_{2^{\ell}}(f(X + \tau))$ has $\Omega(d)$ simple roots with probability $\geq 1/2$, for a random $\tau \in \mathbb{F}_p$.

Theorem

Suppose that f is chosen at random in $\mathbb{F}_p[X]$ or that the heuristic holds. Given a primitive element of \mathbb{F}_p^* , the heuristic algorithm runs in **expected time** $\tilde{O}(d \log^2 p)$, for $p = M \cdot 2^m + 1$ with $M = O(\log p)$.

Running times

Timings

Time (seconds)

Timings

$$p = 5 \cdot 2^{55} + 1$$

• Revisit classical algorithms for FFT finite fields

- Revisit classical algorithms for FFT finite fields
- New approach using Graeffe transforms
 - $\checkmark\,$ deterministic complexity bounds
 - $\checkmark\,$ probabilistic complexity bounds
 - ✓ running times

- Revisit classical algorithms for FFT finite fields
- New approach using Graeffe transforms
 - $\checkmark\,$ deterministic complexity bounds
 - ✓ probabilistic complexity bounds
 - ✓ running times
- Source code in C++ within MATHEMAGIX

- Revisit classical algorithms for FFT finite fields
- New approach using Graeffe transforms
 - $\checkmark\,$ deterministic complexity bounds
 - \checkmark probabilistic complexity bounds
 - ✓ running times
- Source code in C++ within MATHEMAGIX
- \cdot Not the bottleneck anymore for sparse interpolation

- Revisit classical algorithms for FFT finite fields
- New approach using Graeffe transforms
 - $\checkmark\,$ deterministic complexity bounds
 - ✓ probabilistic complexity bounds
 - ✓ running times
- Source code in C++ within MATHEMAGIX
- Not the bottleneck anymore for sparse interpolation
- Open questions:
 - ? Deterministic alg.: use of tangent Graeffe transforms
 - ? Heuristic alg.: Graeffe transform of order 2^{ℓ}
 - ? Prove the heuristic

- Revisit classical algorithms for FFT finite fields
- New approach using Graeffe transforms
 - $\checkmark\,$ deterministic complexity bounds
 - $\checkmark\,$ probabilistic complexity bounds
 - ✓ running times
- Source code in C++ within MATHEMAGIX
- Not the bottleneck anymore for sparse interpolation
- Open questions:
 - ? Deterministic alg.: use of tangent Graeffe transforms
 - ? Heuristic alg.: Graeffe transform of order 2^{ℓ}
 - ? Prove the heuristic

Merci de votre attention !