Root finding over finite fields using Graeffe transforms

Bruno Grenet
LIRMM
U. Montpellier

Joris van der Hoeven \& Grégoire Lecerf
CNRS - LIX
École polytechnique

RAIM - Banyuls - June 29., 2016

Statement of the problem

Root finding over finite fields

Given $f \in \mathbb{F}_{q}[X]$, compute its roots, that is $\left\{\alpha \in \mathbb{F}_{q}: f(\alpha)=0\right\}$.
Input size: $(1+d) \log q$ where $d=\operatorname{deg}(f)$

Statement of the problem

Root finding over finite fields

Given $f \in \mathbb{F}_{q}[X]$, compute its roots, that is $\left\{\alpha \in \mathbb{F}_{q}: f(\alpha)=0\right\}$.
Input size: $(1+d) \log q$ where $d=\operatorname{deg}(f)$

- Assumption (A): f is monic, separable, splits over \mathbb{F}_{q}, $f(0) \neq 0$:

$$
f(X)=\prod_{i=1}^{d}\left(X-\alpha_{i}\right), \quad \alpha_{i} \in \mathbb{F}_{q}^{*}, \quad \alpha_{i} \neq \alpha_{j}
$$

(easy reduction: $f \leftarrow \operatorname{gcd}\left(f, x^{q-1}-1\right)$)

Statement of the problem

Root finding over finite fields

Given $f \in \mathbb{F}_{q}[X]$, compute its roots, that is $\left\{\alpha \in \mathbb{F}_{q}: f(\alpha)=0\right\}$.
Input size: $(1+d) \log q$ where $d=\operatorname{deg}(f)$

- Assumption (A): f is monic, separable, splits over \mathbb{F}_{q}, $f(0) \neq 0$:

$$
f(X)=\prod_{i=1}^{d}\left(X-\alpha_{i}\right), \quad \alpha_{i} \in \mathbb{F}_{q}^{*}, \quad \alpha_{i} \neq \alpha_{j}
$$

(easy reduction: $f \leftarrow \operatorname{gcd}\left(f, X^{q-1}-1\right)$)

- Motivated by sparse interpolation
[van der Hoeven \& Lecerf, 2014]

State of the art \& settings

- No deterministic polytime algorithm is known (even under ERH)

State of the art \& settings

- No deterministic polytime algorithm is known (even under ERH)
- Randomized algorithm: $\tilde{O}\left(d \log ^{2} q\right)$ in average [Rabin (1980)]

State of the art \& settings

- No deterministic polytime algorithm is known (even under ERH)
- Randomized algorithm: $\tilde{O}\left(d \log ^{2} q\right)$ in average [Rabin (1980)]
- Many factorization alg. \rightsquigarrow no improvement for root finding [Cantor-Zassenhaus (1981), Kaltofen-Shoup (1998), Kedlaya-Umans (2011)]

State of the art \& settings

- No deterministic polytime algorithm is known (even under ERH)
- Randomized algorithm: $\tilde{O}\left(d \log ^{2} q\right)$ in average [Rabin (1980)]
- Many factorization alg. \rightsquigarrow no improvement for root finding [Cantor-Zassenhaus (1981), Kaltofen-Shoup (1998), Kedlaya-Umans (2011)]
- Better complexity bounds when $q-1$ is sufficiently smooth [Moenck (1977), von zur Gathen (1987), Mignotte-Schnorr (1988), Rónyai (1989), Shoup (1991, 1992), Źrałek (2010)]

State of the art \& settings

- No deterministic polytime algorithm is known (even under ERH)
- Randomized algorithm: $\tilde{O}\left(d \log ^{2} q\right)$ in average [Rabin (1980)]
- Many factorization alg. \rightsquigarrow no improvement for root finding [Cantor-Zassenhaus (1981), Kaltofen-Shoup (1998), Kedlaya-Umans (2011)]
- Better complexity bounds when $q-1$ is sufficiently smooth [Moenck (1977), von zur Gathen (1987), Mignotte-Schnorr (1988), Rónyai (1989), Shoup (1991, 1992), Źrałek (2010)]
- FFT finite field: $p=M \cdot 2^{m}+1$ with $M=O(\log p)$
- Adapt old algorithms
- New technique based on Graeffe transforms
- Fast implementations

Adapt old algorithms

Rabin's algorithm

- $\prod_{\alpha \in \mathbb{F}_{p}^{*}}(X-\alpha)=X^{p-1}-1$

Rabin's algorithm

- $\prod_{\alpha \in \mathbb{F}_{م}^{*}}(X-\alpha)=X^{p-1}-1=\left(X^{\frac{p-1}{2}}-1\right)\left(X^{\frac{p-1}{2}}+1\right)$

Rabin's algorithm

$$
\cdot \prod_{\alpha \in \mathbb{F}_{p}^{*}}(x-\alpha)=x^{p-1}-1=\left(x^{\frac{p-1}{2}}-1\right)\left(x^{\frac{p-1}{2}}+1\right)
$$

Rabin's algorithm

- $\prod_{\alpha \in \mathbb{F}_{p}^{*}}(x-\alpha)=x^{p-1}-1=\left(x^{\frac{p-1}{2}}-1\right)\left(x^{\frac{p-1}{2}}+1\right)$
- With some luck, $\operatorname{gcd}\left(f, x^{\frac{p-1}{2}}-1\right) \notin\{1, f\}$.

Rabin's algorithm

$$
\cdot \prod_{\alpha \in \mathbb{F}_{p}^{*}}(x-\alpha)=x^{p-1}-1=\left(x^{\frac{p-1}{2}}-1\right)\left(x^{\frac{p-1}{2}}+1\right)
$$

- With some luck, $\operatorname{gcd}\left(f, x^{\frac{p-1}{2}}-1\right) \notin\{1, f\}$.

- Push your luck: $\operatorname{gcd}\left(f,(X+\tau)^{\frac{p-1}{2}}-1\right)$ for some random $\tau \in \mathbb{F}_{p}$

Rabin's algorithm

- $\prod_{\alpha \in \mathbb{F}_{p}^{*}}(X-\alpha)=X^{p-1}-1=\left(X^{\frac{p-1}{2}}-1\right)\left(x^{\frac{p-1}{2}}+1\right)$
- With some luck, $\operatorname{gcd}\left(f, x^{\frac{p-1}{2}}-1\right) \notin\{1, f\}$.

- Push your luck: $\operatorname{gcd}\left(f,(X+\tau)^{\frac{p-1}{2}}-1\right)$ for some random $\tau \in \mathbb{F}_{p}$

$$
\operatorname{deg}\left(\operatorname{gcd}\left(f,(X+\tau)^{\frac{p-1}{2}}-1\right)\right) \simeq d / 2
$$

Rabin's algorithm

- $\prod_{\alpha \in \mathbb{F}_{p}^{*}}(x-\alpha)=x^{p-1}-1=\left(x^{\frac{p-1}{2}}-1\right)\left(x^{\frac{p-1}{2}}+1\right)$
- With some luck, $\operatorname{gcd}\left(f, x^{\frac{p-1}{2}}-1\right) \notin\{1, f\}$.

- Push your luck: $\operatorname{gcd}\left(f,(X+\tau)^{\frac{p-1}{2}}-1\right)$ for some random $\tau \in \mathbb{F}_{p}$ $\operatorname{deg}\left(\operatorname{gcd}\left(f,(X+\tau)^{\frac{p-1}{2}}-1\right)\right) \simeq d / 2$

Randomized algorithm

The roots of $f \in \mathbb{F}_{p}[X]$ can be computed in expected time $\tilde{O}\left(d \log ^{2} p\right)$.

$$
x^{p-1}-1=\prod_{i=0}^{2^{\ell}-1}\left(X^{M 2^{m-\ell}}-\xi^{i}\right), \text { where } \xi \text { is primitive of order } 2^{\ell}
$$

Modified Rabin's algorithm (for FFT finite fields)

Worthwhile in practice for small $\ell=2,3, \ldots$

New technique: Graeffe transform

The Graeffe transform
Let $f(X)=\prod_{i}\left(X-\alpha_{i}\right) \in \mathbb{F}_{p}[X]$.

$$
f(X) f(-X)=\prod_{i}\left(X-\alpha_{i}\right)\left(-X-\alpha_{i}\right)=(-1)^{d} \prod_{i}\left(X^{2}-\alpha_{i}^{2}\right)
$$

Let $f(X)=\prod_{i}\left(X-\alpha_{i}\right) \in \mathbb{F}_{\rho}[X]$.

$$
f(X) f(-X)=\prod_{i}\left(X-\alpha_{i}\right)\left(-X-\alpha_{i}\right)=(-1)^{d} \prod_{i}\left(X^{2}-\alpha_{i}^{2}\right)
$$

Definition

$G_{2}(f)(X)=\prod_{i}\left(X-\alpha_{i}^{2}\right)$ is the Graeffe transform of f.

Let $f(X)=\prod_{i}\left(X-\alpha_{i}\right) \in \mathbb{F}_{p}[X]$.

$$
f(X) f(-X)=\prod_{i}\left(X-\alpha_{i}\right)\left(-X-\alpha_{i}\right)=(-1)^{d} \prod_{i}\left(X^{2}-\alpha_{i}^{2}\right)
$$

Definition

$G_{2}(f)(X)=\prod_{i}\left(X-\alpha_{i}^{2}\right)$ is the Graeffe transform of f.
$G_{\rho}(f)(X)=\prod_{i}\left(X-\alpha_{i}^{\rho}\right)$ is the Graeffe transform of order ρ of f.

Let $f(X)=\prod_{i}\left(X-\alpha_{i}\right) \in \mathbb{F}_{p}[X]$.

$$
f(X) f(-X)=\prod\left(X-\alpha_{i}\right)\left(-X-\alpha_{i}\right)=(-1)^{d} \prod\left(X^{2}-\alpha_{i}^{2}\right)
$$

Definition

$G_{2}(f)(X)=\prod_{i}\left(X-\alpha_{i}^{2}\right)$ is the Graeffe transform of f.
$G_{\rho}(f)(X)=\prod_{i}\left(X-\alpha_{i}^{\rho}\right)$ is the Graeffe transform of order ρ of f.

Remarks:

- $G_{\rho_{1} \rho_{2}}=G_{\rho_{1}} \circ G_{\rho_{2}}$, and in particular $G_{2^{\ell}}=G_{2} \circ \cdots \circ G_{2}$
- $G_{p-1}(f)(X)=\prod_{i}\left(X-\alpha_{i}^{p-1}\right)=(X-1)^{d}$

Effect of Graeffe transforms

Effect of Graeffe transforms

Using Graeffe transforms

$f \xrightarrow{G_{2}} g_{1} \xrightarrow{G_{2}} g_{2} \xrightarrow{G_{2}} \cdots \xrightarrow{G_{2}} g_{m} \xrightarrow{G_{M}} g_{m+1}$

Using Graeffe transforms

$$
f \xrightarrow{G_{2}} g_{1} \xrightarrow{G_{2}} g_{2} \xrightarrow{G_{2}} \cdots \xrightarrow{Z_{m}} g_{m} \xrightarrow{G_{M}} g_{m+1}
$$

$\cdot Z_{m} \subseteq\left\{\zeta^{i^{2}}: 0 \leq i \leq M-1\right\} \quad$ (ζ : primitive element of \mathbb{F}_{p}^{*})

Using Graeffe transforms

$$
\begin{gathered}
f \xrightarrow{G_{2}} g_{1} \xrightarrow{G_{2}} g_{2} \xrightarrow{G_{2}} \cdots \stackrel{G_{2}}{\longrightarrow} g_{m} \xrightarrow{G_{M}} g_{m+1} \\
Z(f) \longleftarrow Z_{1} \longleftarrow Z_{2} \longleftarrow Z_{m} \longleftarrow
\end{gathered}
$$

- $Z_{m} \subseteq\left\{\zeta^{\zeta^{m}}: 0 \leq i \leq M-1\right\} \quad\left(\zeta:\right.$ primitive element of $\left.\mathbb{F}_{p}^{*}\right)$

Using Graeffe transforms

$$
\begin{gathered}
f \stackrel{G_{2}}{\longrightarrow} g_{1} \xrightarrow{G_{2}} g_{2} \xrightarrow{G_{2}} \cdots \stackrel{G_{2}}{\longrightarrow} g_{m} \xrightarrow{G_{M}} g_{m+1} \\
Z(f) \longleftarrow Z_{1} \longleftarrow Z_{2} \longleftarrow \cdots \longleftarrow z_{m} \longleftarrow\{1\}
\end{gathered}
$$

- $Z_{m} \subseteq\left\{\zeta^{i^{2}}: 0 \leq i \leq M-1\right\} \quad$ (ζ : primitive element of \mathbb{F}_{p}^{*})
- For $\beta \in Z_{k+1}$,
- $\operatorname{gcd}\left(g_{k}, X^{2}-\beta\right)= \begin{cases}X-\alpha_{i} & \text { (simple root) } \\ \left(X-\alpha_{i}\right)\left(X-\alpha_{j}\right) & \text { (multiple root) }\end{cases}$

Using Graeffe transforms

$$
\begin{aligned}
& f \xrightarrow{G_{2}} g_{1} \xrightarrow{G_{2}} g_{2} \xrightarrow{G_{2}} \cdots \xrightarrow{G_{2}} g_{m} \xrightarrow{G_{M}} g_{m+1} \\
& \text { I } \\
& Z(f) \longleftarrow Z_{1} \longleftarrow Z_{2} \longleftarrow \cdots \longleftarrow Z_{m} \longleftarrow \longleftarrow\{1\}
\end{aligned}
$$

- $Z_{m} \subseteq\left\{\zeta^{i^{m}}: 0 \leq i \leq M-1\right\} \quad\left(\zeta:\right.$ primitive element of $\left.\mathbb{F}_{p}^{*}\right)$
- For $\beta \in Z_{k+1}$,
$\cdot \operatorname{gcd}\left(g_{k}, X^{2}-\beta\right)= \begin{cases}X-\alpha_{i} & \text { (simple root) } \\ \left(X-\alpha_{i}\right)\left(X-\alpha_{j}\right) & \text { (multiple root) }\end{cases}$
- Multiple roots: If $\beta=\zeta^{e}$,

$$
\alpha_{i}, \alpha_{j} \in\left\{\zeta^{e / 2}, \zeta^{\left(e+2^{m} M\right) / 2}\right\}
$$

Deterministic complexity

Theorem

Given $f \in \mathbb{F}_{q}[X]$ satisfying (A), the irreducible factorization of $(q-1)$ and a primitive element of \mathbb{F}_{q}^{*}, the roots of f can be computed in time

$$
\tilde{O}\left(\sqrt{S_{1}(q-1)} d \log ^{2} q\right)+\left(d \log ^{2} q\right)^{1+o(1)}
$$

where $S_{1}(q-1)$ is the largest factor of $q-1$.

Deterministic complexity

Theorem

Given $f \in \mathbb{F}_{q}[X]$ satisfying (A), the irreducible factorization of $(q-1)$ and a primitive element of \mathbb{F}_{q}^{*}, the roots of f can be computed in time

$$
\tilde{O}\left(\sqrt{S_{1}(q-1)} d \log ^{2} q\right)+\left(d \log ^{2} q\right)^{1+o(1)}
$$

where $S_{1}(q-1)$ is the largest factor of $q-1$.

- Based on:
- Modular composition
[Kedlaya-Umans (2008)]
- Fast discrete logarithms in \mathbb{F}_{q}^{*}
[Pohlig-Hellman (1978)]
- Computation of roots à la Pollard-Strassen [Shoup (1991)]

Deterministic complexity

Theorem

Given $f \in \mathbb{F}_{q}[X]$ satisfying (A), the irreducible factorization of $(q-1)$ and a primitive element of \mathbb{F}_{q}^{*}, the roots of f can be computed in time

$$
\tilde{O}\left(\sqrt{S_{1}(q-1)} d \log ^{2} q\right)+\left(d \log ^{2} q\right)^{1+o(1)}
$$

where $S_{1}(q-1)$ is the largest factor of $q-1$.

- Based on:
- Modular composition
- Fast discrete logarithms in \mathbb{F}_{a}^{*}
[Kedlaya-Umans (2008)]
- Computation of roots à la Pollard-Strassen
[Pohlig-Hellman (1978)]
[Shoup (1991)]
- Refines Shoup's complexity bounds

Randomization

Tangent Graeffe transform

Definition

The tangent Graeffe transform of order π of $f \in \mathbb{F}_{p}[X]$ is

$$
G_{\pi}\left(f+\varepsilon f^{\prime}\right) \in\left(\mathbb{F}_{p}[\varepsilon] /\left\langle\varepsilon^{2}\right\rangle\right)[X] .
$$

Tangent Graeffe transform

Definition

The tangent Graeffe transform of order π of $f \in \mathbb{F}_{\rho}[X]$ is

$$
G_{\pi}\left(f+\varepsilon f^{\prime}\right) \in\left(\mathbb{F}_{\rho}[\varepsilon] /\left\langle\varepsilon^{2}\right\rangle\right)[X] .
$$

Remarks:

- $\left(f+\varepsilon f^{\prime}\right)(X)=f(X+\varepsilon)$
- $G_{2}\left(f+\varepsilon f^{\prime}\right)=G_{2}(f)+\varepsilon \bar{g}$ with $\bar{g}\left(X^{2}\right)=f(X) f^{\prime}(-X)+f(-X) f^{\prime}(X)$

Tangent Graeffe transform

Definition

The tangent Graeffe transform of order π of $f \in \mathbb{F}_{\rho}[X]$ is

$$
G_{\pi}\left(f+\varepsilon f^{\prime}\right) \in\left(\mathbb{F}_{\rho}[\varepsilon] /\left\langle\varepsilon^{2}\right\rangle\right)[X] .
$$

Remarks:

- $\left(f+\varepsilon f^{\prime}\right)(X)=f(X+\varepsilon)$
- $G_{2}\left(f+\varepsilon f^{\prime}\right)=G_{2}(f)+\varepsilon \bar{g}$ with $\bar{g}\left(X^{2}\right)=f(X) f^{\prime}(-X)+f(-X) f^{\prime}(X)$

Lemma

Let $g+\varepsilon \bar{g}=G_{2^{\ell}}\left(f+\varepsilon f^{\prime}\right)$. A nonzero root β of g is simple iff $\bar{g}(\beta) \neq 0$. The corresponding root of f is $\alpha=2^{\ell} \beta g^{\prime}(\beta) / \bar{g}(\beta)$.

Randomized algorithm

Goal: Ensure many simple roots

- Replace f by $f_{\tau}(X)=f(X+\tau)$ for a random $\tau \in \mathbb{F}_{p}$.

Randomized algorithm

Goal: Ensure many simple roots

- Replace f by $f_{\tau}(X)=f(X+\tau)$ for a random $\tau \in \mathbb{F}_{p}$.

Lemma

If $2^{\ell} \leq \frac{p-1}{d(d-1)}, G_{2^{\ell}}\left(f_{\tau}\right)$ has no multiple root with prob. $\geq 1 / 2$.

Randomized algorithm

Goal: Ensure many simple roots

- Replace f by $f_{\tau}(X)=f(X+\tau)$ for a random $\tau \in \mathbb{F}_{p}$.

Lemma

If $2^{\ell} \leq \frac{p-1}{d(d-1)}, G_{2^{\ell}}\left(f_{\tau}\right)$ has no multiple root with prob. $\geq 1 / 2$.

$$
f(X+\tau+\varepsilon) \xrightarrow{G_{2}} \cdots \xrightarrow{G_{2}} g_{\ell}+\varepsilon \bar{g}_{\ell} \xrightarrow{G_{2}} \cdots \xrightarrow{G_{2}} g_{m}+\varepsilon \bar{g}_{m}
$$

Randomized algorithm

Goal: Ensure many simple roots

- Replace f by $f_{\tau}(X)=f(X+\tau)$ for a random $\tau \in \mathbb{F}_{p}$.

Lemma

If $2^{\ell} \leq \frac{p-1}{d(d-1)}, G_{2^{\ell}}\left(f_{\tau}\right)$ has no multiple root with prob. $\geq 1 / 2$.

$$
\begin{array}{r}
f(X+\tau+\varepsilon) \xrightarrow{G_{2}} \cdots \xrightarrow{G_{2}} g_{\ell}+\varepsilon \bar{g}_{\ell} \xrightarrow{G_{2}} \cdots \xrightarrow{I_{m}}+\varepsilon \bar{g}_{m} \\
\\
\\
\\
\\
\\
Z_{m} \\
\left.Z_{m}: 0 \leq e<M\right\}
\end{array}
$$

Randomized algorithm

Goal: Ensure many simple roots

- Replace f by $f_{\tau}(X)=f(X+\tau)$ for a random $\tau \in \mathbb{F}_{p}$.

Lemma

If $2^{\ell} \leq \frac{p-1}{d(d-1)}, G_{2^{\ell}}\left(f_{\tau}\right)$ has no multiple root with prob. $\geq 1 / 2$.

$$
f(X+\tau+\varepsilon) \xrightarrow{G_{2}} \cdots \xrightarrow{G_{2}} g_{\ell}+\varepsilon \bar{g}_{\ell} \xrightarrow{G_{2}} \cdots \xrightarrow{G_{2}} g_{m}+\varepsilon \bar{g}_{m}
$$

$$
\begin{aligned}
& Z_{\ell} \longleftarrow \cdots \longleftarrow Z_{m} \\
&\left\{\xi^{e}: 0 \leq e<M\right\}
\end{aligned}
$$

Randomized algorithm

Goal: Ensure many simple roots

- Replace f by $f_{\tau}(X)=f(X+\tau)$ for a random $\tau \in \mathbb{F}_{p}$.

Lemma

If $2^{\ell} \leq \frac{p-1}{d(d-1)}, G_{2^{\ell}}\left(f_{\tau}\right)$ has no multiple root with prob. $\geq 1 / 2$.

$$
f(X+\tau+\varepsilon) \xrightarrow{G_{2}} \cdots \xrightarrow{G_{2}} g_{\ell}+\varepsilon \bar{g}_{\ell} \xrightarrow{G_{2}} \cdots \xrightarrow{G_{2}} g_{m}+\varepsilon \bar{g}_{m}
$$

$$
\underset{Z(f)}{Z_{0}} \longleftarrow \text { simple roots }^{\substack{l}} \begin{aligned}
& Z_{\ell} \longleftarrow Z_{m} \\
& \\
& \left\{\xi^{e}: 0 \leq e<M\right\}
\end{aligned}
$$

Randomized algorithm

Goal: Ensure many simple roots

- Replace f by $f_{\tau}(X)=f(X+\tau)$ for a random $\tau \in \mathbb{F}_{p}$.

Lemma

If $2^{\ell} \leq \frac{p-1}{d(d-1)}, G_{2^{\ell}}\left(f_{\tau}\right)$ has no multiple root with prob. $\geq 1 / 2$.

$$
\begin{aligned}
& f(X+\tau+\varepsilon) \xrightarrow{G_{2}} \cdots \xrightarrow{G_{2}} g_{\ell}+\varepsilon \bar{g}_{\ell} \xrightarrow{G_{2}} \cdots \xrightarrow{G_{2}} g_{m}+\varepsilon \bar{g}_{m} \\
& \text { recursive call: } \\
& f / \prod_{\alpha \in Z_{0}}(X-\alpha)
\end{aligned}
$$

Randomized complexity

Theorem

Given $f \in \mathbb{F}_{p}[X]$ satisfying (A) and a primitive element of \mathbb{F}_{p}^{*}, the randomized algorithm runs in expected time $\tilde{O}\left(d \log ^{2} p\right)$, for $p=M \cdot 2^{m}+1$ with $M=O(\log p)$.

Randomized complexity

Theorem

Given $f \in \mathbb{F}_{p}[X]$ satisfying (A) and a primitive element of \mathbb{F}_{p}^{*}, the randomized algorithm runs in expected time $\tilde{O}\left(d \log ^{2} p\right)$, for $p=M \cdot 2^{m}+1$ with $M=O(\log p)$.

- Same asymptotic as Rabin's algorithm
- Better efficiency in practice
- Primitive elements easy to compute in practice

Heuristic algorithm

Heuristic

If $2^{\ell} \simeq p / d, G_{2^{\ell}}(f(X+\tau))$ has $\Omega(d)$ simple roots with probability
$\geq 1 / 2$, for a random $\tau \in \mathbb{F}_{p}$.
Justification: holds for a random f rather than $f(X+\tau)$.

Heuristic algorithm

Heuristic

If $2^{\ell} \simeq p / d, G_{2^{\ell}}(f(X+\tau))$ has $\Omega(d)$ simple roots with probability
$\geq 1 / 2$, for a random $\tau \in \mathbb{F}_{p}$.
Justification: holds for a random f rather than $f(X+\tau)$.

$$
f(X+\tau+\varepsilon) \xrightarrow{G_{2^{\ell}}} g_{\ell}+\varepsilon \bar{g}_{\ell}
$$

Heuristic algorithm

Heuristic

If $2^{\ell} \simeq p / d, G_{2^{\ell}}(f(X+\tau))$ has $\Omega(d)$ simple roots with probability
$\geq 1 / 2$, for a random $\tau \in \mathbb{F}_{p}$.
Justification: holds for a random f rather than $f(X+\tau)$.

$$
f(X+\tau+\varepsilon) \xrightarrow{G_{2 \ell}} g_{\ell}+\varepsilon \bar{g}_{\ell}
$$

Heuristic algorithm

Heuristic

If $2^{\ell} \simeq p / d, G_{2^{\ell}}(f(X+\tau))$ has $\Omega(d)$ simple roots with probability
$\geq 1 / 2$, for a random $\tau \in \mathbb{F}_{p}$.
Justification: holds for a random f rather than $f(X+\tau)$.

$$
\begin{gathered}
f(X+\tau+\varepsilon) \xrightarrow{G_{2 \ell}} g_{\ell}+\varepsilon \bar{g}_{\ell} \\
Z_{0} \longleftrightarrow \text { simple roots } \\
Z_{\ell}
\end{gathered}
$$

Heuristic algorithm

Heuristic

If $2^{\ell} \simeq p / d, G_{2^{\ell}}(f(X+\tau))$ has $\Omega(d)$ simple roots with probability
$\geq 1 / 2$, for a random $\tau \in \mathbb{F}_{p}$.
Justification: holds for a random f rather than $f(X+\tau)$.

Heuristic complexity

Theorem

Suppose that f is chosen at random in $\mathbb{F}_{p}[X]$ or that the heuristic holds. Given a primitive element of \mathbb{E}_{p}^{*}, the heuristic algorithm runs in expected time $\tilde{O}\left(d \log ^{2} p\right)$, for $p=M \cdot 2^{m}+1$ with $M=O(\log p)$.

Running times

Timings

$$
p=7 \cdot 2^{26}+1
$$

$$
p=5 \cdot 2^{55}+1
$$

Conclusion

- Revisit classical algorithms for FFT finite fields

Conclusion

- Revisit classical algorithms for FFT finite fields
- New approach using Graeffe transforms
\checkmark deterministic complexity bounds
\checkmark probabilistic complexity bounds
\checkmark running times
- Revisit classical algorithms for FFT finite fields
- New approach using Graeffe transforms
\checkmark deterministic complexity bounds
\checkmark probabilistic complexity bounds
\checkmark running times
- Source code in C++ within Mathemagix
- Revisit classical algorithms for FFT finite fields
- New approach using Graeffe transforms
\checkmark deterministic complexity bounds
\checkmark probabilistic complexity bounds
\checkmark running times
- Source code in C++ within Mathemagix
- Not the bottleneck anymore for sparse interpolation
- Revisit classical algorithms for FFT finite fields
- New approach using Graeffe transforms
\checkmark deterministic complexity bounds
\checkmark probabilistic complexity bounds
\checkmark running times
- Source code in C++ within Mathemagix
- Not the bottleneck anymore for sparse interpolation
- Open questions:
? Deterministic alg.: use of tangent Graeffe transforms
? Heuristic alg.: Graeffe transform of order 2^{ℓ}
? Prove the heuristic
- Revisit classical algorithms for FFT finite fields
- New approach using Graeffe transforms
\checkmark deterministic complexity bounds
\checkmark probabilistic complexity bounds
\checkmark running times
- Source code in C++ within Mathemagix
- Not the bottleneck anymore for sparse interpolation
- Open questions:
? Deterministic alg.: use of tangent Graeffe transforms
? Heuristic alg.: Graeffe transform of order 2^{ℓ}
? Prove the heuristic
Merci de votre attention!

