
Root finding over finite fields
using Graeffe transforms

Bruno Grenet
LIRMM
U. Montpellier

Joris van der Hoeven & Grégoire Lecerf
CNRS – LIX
École polytechnique

RAIM — Banyuls — June 29., 2016



Statement of the problem

Root finding over finite fields

Given f ∈ Fq[X], compute its roots, that is {α ∈ Fq : f(α) = 0}.

Input size: (1+ d) logq where d = deg(f)

• Assumption (A): f is monic, separable, splits over Fq,
f(0) ̸= 0:

f(X) =
d∏
i=1

(X− αi), αi ∈ F∗
q , αi ̸= αj

(easy reduction: f← gcd(f, Xq−1 − 1))

• Motivated by sparse interpolation
[van der Hoeven & Lecerf, 2014]

1/15



Statement of the problem

Root finding over finite fields

Given f ∈ Fq[X], compute its roots, that is {α ∈ Fq : f(α) = 0}.

Input size: (1+ d) logq where d = deg(f)

• Assumption (A): f is monic, separable, splits over Fq,
f(0) ̸= 0:

f(X) =
d∏
i=1

(X− αi), αi ∈ F∗
q , αi ̸= αj

(easy reduction: f← gcd(f, Xq−1 − 1))

• Motivated by sparse interpolation
[van der Hoeven & Lecerf, 2014]

1/15



Statement of the problem

Root finding over finite fields

Given f ∈ Fq[X], compute its roots, that is {α ∈ Fq : f(α) = 0}.

Input size: (1+ d) logq where d = deg(f)

• Assumption (A): f is monic, separable, splits over Fq,
f(0) ̸= 0:

f(X) =
d∏
i=1

(X− αi), αi ∈ F∗
q , αi ̸= αj

(easy reduction: f← gcd(f, Xq−1 − 1))

• Motivated by sparse interpolation
[van der Hoeven & Lecerf, 2014]

1/15



State of the art & settings

• No deterministic polytime algorithm is known (even
under ERH)

• Randomized algorithm: Õ(d log2 q) in average [Rabin (1980)]

• Many factorization alg. ⇝ no improvement for root finding
[Cantor-Zassenhaus (1981), Kaltofen-Shoup (1998), Kedlaya-Umans (2011)]

• Better complexity bounds when q− 1 is sufficiently smooth
[Moenck (1977), von zur Gathen (1987), Mignotte-Schnorr (1988),
Rónyai (1989), Shoup (1991, 1992), Źrałek (2010)]

• FFT finite field: p = M · 2m + 1 with M = O(logp)

• Adapt old algorithms
• New technique based on Graeffe transforms
• Fast implementations

2/15



State of the art & settings

• No deterministic polytime algorithm is known (even
under ERH)

• Randomized algorithm: Õ(d log2 q) in average [Rabin (1980)]

• Many factorization alg. ⇝ no improvement for root finding
[Cantor-Zassenhaus (1981), Kaltofen-Shoup (1998), Kedlaya-Umans (2011)]

• Better complexity bounds when q− 1 is sufficiently smooth
[Moenck (1977), von zur Gathen (1987), Mignotte-Schnorr (1988),
Rónyai (1989), Shoup (1991, 1992), Źrałek (2010)]

• FFT finite field: p = M · 2m + 1 with M = O(logp)

• Adapt old algorithms
• New technique based on Graeffe transforms
• Fast implementations

2/15



State of the art & settings

• No deterministic polytime algorithm is known (even
under ERH)

• Randomized algorithm: Õ(d log2 q) in average [Rabin (1980)]

• Many factorization alg. ⇝ no improvement for root finding
[Cantor-Zassenhaus (1981), Kaltofen-Shoup (1998), Kedlaya-Umans (2011)]

• Better complexity bounds when q− 1 is sufficiently smooth
[Moenck (1977), von zur Gathen (1987), Mignotte-Schnorr (1988),
Rónyai (1989), Shoup (1991, 1992), Źrałek (2010)]

• FFT finite field: p = M · 2m + 1 with M = O(logp)

• Adapt old algorithms
• New technique based on Graeffe transforms
• Fast implementations

2/15



State of the art & settings

• No deterministic polytime algorithm is known (even
under ERH)

• Randomized algorithm: Õ(d log2 q) in average [Rabin (1980)]

• Many factorization alg. ⇝ no improvement for root finding
[Cantor-Zassenhaus (1981), Kaltofen-Shoup (1998), Kedlaya-Umans (2011)]

• Better complexity bounds when q− 1 is sufficiently smooth
[Moenck (1977), von zur Gathen (1987), Mignotte-Schnorr (1988),
Rónyai (1989), Shoup (1991, 1992), Źrałek (2010)]

• FFT finite field: p = M · 2m + 1 with M = O(logp)

• Adapt old algorithms
• New technique based on Graeffe transforms
• Fast implementations

2/15



State of the art & settings

• No deterministic polytime algorithm is known (even
under ERH)

• Randomized algorithm: Õ(d log2 q) in average [Rabin (1980)]

• Many factorization alg. ⇝ no improvement for root finding
[Cantor-Zassenhaus (1981), Kaltofen-Shoup (1998), Kedlaya-Umans (2011)]

• Better complexity bounds when q− 1 is sufficiently smooth
[Moenck (1977), von zur Gathen (1987), Mignotte-Schnorr (1988),
Rónyai (1989), Shoup (1991, 1992), Źrałek (2010)]

• FFT finite field: p = M · 2m + 1 with M = O(logp)
• Adapt old algorithms
• New technique based on Graeffe transforms
• Fast implementations

2/15



Adapt old algorithms



Rabin's algorithm

•
∏
α∈F∗

p

(X− α) = Xp−1 − 1

= (X
p−1
2 − 1)(X

p−1
2 + 1)

α
p−1
2 = 1

α
p−1
2 = −1

(α+ τ)
p−1
2

= 1

(α+ τ)
p−1
2

= −1

• With some luck, gcd(f, X
p−1
2 − 1) /∈ {1, f}.

• Push your luck: gcd(f, (X+ τ)
p−1
2 − 1) for

some random τ ∈ Fp

deg
(
gcd(f, (X+ τ)

p−1
2 − 1)

)
≃ d/2

Randomized algorithm

The roots of f ∈ Fp[X] can be computed in
expected time Õ(d log2 p).

3/15



Rabin's algorithm

•
∏
α∈F∗

p

(X− α) = Xp−1 − 1 = (X
p−1
2 − 1)(X

p−1
2 + 1)

α
p−1
2 = 1

α
p−1
2 = −1

(α+ τ)
p−1
2

= 1

(α+ τ)
p−1
2

= −1

• With some luck, gcd(f, X
p−1
2 − 1) /∈ {1, f}.

• Push your luck: gcd(f, (X+ τ)
p−1
2 − 1) for

some random τ ∈ Fp

deg
(
gcd(f, (X+ τ)

p−1
2 − 1)

)
≃ d/2

Randomized algorithm

The roots of f ∈ Fp[X] can be computed in
expected time Õ(d log2 p).

3/15



Rabin's algorithm

•
∏
α∈F∗

p

(X− α) = Xp−1 − 1 = (X
p−1
2 − 1)(X

p−1
2 + 1)

α
p−1
2 = 1

α
p−1
2 = −1

(α+ τ)
p−1
2

= 1

(α+ τ)
p−1
2

= −1

• With some luck, gcd(f, X
p−1
2 − 1) /∈ {1, f}.

• Push your luck: gcd(f, (X+ τ)
p−1
2 − 1) for

some random τ ∈ Fp

deg
(
gcd(f, (X+ τ)

p−1
2 − 1)

)
≃ d/2

Randomized algorithm

The roots of f ∈ Fp[X] can be computed in
expected time Õ(d log2 p).

3/15



Rabin's algorithm

•
∏
α∈F∗

p

(X− α) = Xp−1 − 1 = (X
p−1
2 − 1)(X

p−1
2 + 1)

α
p−1
2 = 1

α
p−1
2 = −1

(α+ τ)
p−1
2

= 1

(α+ τ)
p−1
2

= −1

• With some luck, gcd(f, X
p−1
2 − 1) /∈ {1, f}.

• Push your luck: gcd(f, (X+ τ)
p−1
2 − 1) for

some random τ ∈ Fp

deg
(
gcd(f, (X+ τ)

p−1
2 − 1)

)
≃ d/2

Randomized algorithm

The roots of f ∈ Fp[X] can be computed in
expected time Õ(d log2 p).

3/15



Rabin's algorithm

•
∏
α∈F∗

p

(X− α) = Xp−1 − 1 = (X
p−1
2 − 1)(X

p−1
2 + 1)

α
p−1
2 = 1

α
p−1
2 = −1

(α+ τ)
p−1
2

= 1

(α+ τ)
p−1
2

= −1

• With some luck, gcd(f, X
p−1
2 − 1) /∈ {1, f}.

• Push your luck: gcd(f, (X+ τ)
p−1
2 − 1) for

some random τ ∈ Fp

deg
(
gcd(f, (X+ τ)

p−1
2 − 1)

)
≃ d/2

Randomized algorithm

The roots of f ∈ Fp[X] can be computed in
expected time Õ(d log2 p).

3/15



Rabin's algorithm

•
∏
α∈F∗

p

(X− α) = Xp−1 − 1 = (X
p−1
2 − 1)(X

p−1
2 + 1)

α
p−1
2 = 1

α
p−1
2 = −1

(α+ τ)
p−1
2

= 1

(α+ τ)
p−1
2

= −1

• With some luck, gcd(f, X
p−1
2 − 1) /∈ {1, f}.

• Push your luck: gcd(f, (X+ τ)
p−1
2 − 1) for

some random τ ∈ Fp

deg
(
gcd(f, (X+ τ)

p−1
2 − 1)

)
≃ d/2

Randomized algorithm

The roots of f ∈ Fp[X] can be computed in
expected time Õ(d log2 p).

3/15



Rabin's algorithm

•
∏
α∈F∗

p

(X− α) = Xp−1 − 1 = (X
p−1
2 − 1)(X

p−1
2 + 1)

α
p−1
2 = 1

α
p−1
2 = −1

(α+ τ)
p−1
2

= 1

(α+ τ)
p−1
2

= −1

• With some luck, gcd(f, X
p−1
2 − 1) /∈ {1, f}.

• Push your luck: gcd(f, (X+ τ)
p−1
2 − 1) for

some random τ ∈ Fp

deg
(
gcd(f, (X+ τ)

p−1
2 − 1)

)
≃ d/2

Randomized algorithm

The roots of f ∈ Fp[X] can be computed in
expected time Õ(d log2 p).

3/15



Modified Rabin's algorithm (for FFT finite fields)

Xp−1 − 1 =
2ℓ−1∏
i=0

(XM2m−ℓ − ξi), where ξ is primitive of order 2ℓ.

ξ0

ξ1

ξ2

ξ3

gcd(f, (X+ τ)M2
m−ℓ − ξ0)

gcd(f, (X+ τ)M2
m−ℓ − ξ1)

gcd(f, (X+ τ)M2
m−ℓ − ξ2)

gcd(f, (X+ τ)M2
m−ℓ − ξ3)

degrees
≃ d/2ℓ

Worthwhile in practice for small ℓ = 2, 3, . . .

4/15



Modified Rabin's algorithm (for FFT finite fields)

Xp−1 − 1 =
2ℓ−1∏
i=0

(XM2m−ℓ − ξi), where ξ is primitive of order 2ℓ.

ξ0

ξ1

ξ2

ξ3

gcd(f, (X+ τ)M2
m−ℓ − ξ0)

gcd(f, (X+ τ)M2
m−ℓ − ξ1)

gcd(f, (X+ τ)M2
m−ℓ − ξ2)

gcd(f, (X+ τ)M2
m−ℓ − ξ3)

degrees
≃ d/2ℓ

Worthwhile in practice for small ℓ = 2, 3, . . .

4/15



Modified Rabin's algorithm (for FFT finite fields)

Xp−1 − 1 =
2ℓ−1∏
i=0

(XM2m−ℓ − ξi), where ξ is primitive of order 2ℓ.

ξ0

ξ1

ξ2

ξ3

gcd(f, (X+ τ)M2
m−ℓ − ξ0)

gcd(f, (X+ τ)M2
m−ℓ − ξ1)

gcd(f, (X+ τ)M2
m−ℓ − ξ2)

gcd(f, (X+ τ)M2
m−ℓ − ξ3)

degrees
≃ d/2ℓ

Worthwhile in practice for small ℓ = 2, 3, . . .

4/15



Modified Rabin's algorithm (for FFT finite fields)

Xp−1 − 1 =
2ℓ−1∏
i=0

(XM2m−ℓ − ξi), where ξ is primitive of order 2ℓ.

ξ0

ξ1

ξ2

ξ3

gcd(f, (X+ τ)M2
m−ℓ − ξ0)

gcd(f, (X+ τ)M2
m−ℓ − ξ1)

gcd(f, (X+ τ)M2
m−ℓ − ξ2)

gcd(f, (X+ τ)M2
m−ℓ − ξ3)

degrees
≃ d/2ℓ

Worthwhile in practice for small ℓ = 2, 3, . . .

4/15



New technique: Graeffe transform



The Graeffe transform

Let f(X) =
∏
i(X− αi) ∈ Fp[X].

f(X)f(−X) =
∏
i
(X− αi)(−X− αi) = (−1)d

∏
i
(X2 − α2i )

Definition

G2(f)(X) =
∏
i(X− α2i ) is the Graeffe transform of f.

Gρ(f)(X) =
∏
i(X− αρ

i ) is the Graeffe transform of order ρ of f.

Remarks:
• Gρ1ρ2 = Gρ1 ◦ Gρ2 , and in particular G2ℓ = G2 ◦ · · · ◦ G2
• Gp−1(f)(X) =

∏
i(X− αp−1i ) = (X− 1)d

5/15



The Graeffe transform

Let f(X) =
∏
i(X− αi) ∈ Fp[X].

f(X)f(−X) =
∏
i
(X− αi)(−X− αi) = (−1)d

∏
i
(X2 − α2i )

Definition

G2(f)(X) =
∏
i(X− α2i ) is the Graeffe transform of f.

Gρ(f)(X) =
∏
i(X− αρ

i ) is the Graeffe transform of order ρ of f.

Remarks:
• Gρ1ρ2 = Gρ1 ◦ Gρ2 , and in particular G2ℓ = G2 ◦ · · · ◦ G2
• Gp−1(f)(X) =

∏
i(X− αp−1i ) = (X− 1)d

5/15



The Graeffe transform

Let f(X) =
∏
i(X− αi) ∈ Fp[X].

f(X)f(−X) =
∏
i
(X− αi)(−X− αi) = (−1)d

∏
i
(X2 − α2i )

Definition

G2(f)(X) =
∏
i(X− α2i ) is the Graeffe transform of f.

Gρ(f)(X) =
∏
i(X− αρ

i ) is the Graeffe transform of order ρ of f.

Remarks:
• Gρ1ρ2 = Gρ1 ◦ Gρ2 , and in particular G2ℓ = G2 ◦ · · · ◦ G2
• Gp−1(f)(X) =

∏
i(X− αp−1i ) = (X− 1)d

5/15



The Graeffe transform

Let f(X) =
∏
i(X− αi) ∈ Fp[X].

f(X)f(−X) =
∏
i
(X− αi)(−X− αi) = (−1)d

∏
i
(X2 − α2i )

Definition

G2(f)(X) =
∏
i(X− α2i ) is the Graeffe transform of f.

Gρ(f)(X) =
∏
i(X− αρ

i ) is the Graeffe transform of order ρ of f.

Remarks:
• Gρ1ρ2 = Gρ1 ◦ Gρ2 , and in particular G2ℓ = G2 ◦ · · · ◦ G2
• Gp−1(f)(X) =

∏
i(X− αp−1i ) = (X− 1)d

5/15



Effect of Graeffe transforms

×
×
×

×

×

×

f

×

×

×
×

G2(f)

×

×

×

G4(f)

6/15



Effect of Graeffe transforms

×
×
×

×

×

×

f

×

×

×
×

G2(f)

×

×

×

G4(f)

6/15



Effect of Graeffe transforms

×
×
×

×

×

×

f

×

×

×
×

G2(f)

×

×

×

G4(f)

6/15



Using Graeffe transforms

f g1 g2 … gm gm+1

Z(f) Z1 Z2 … Zm {1}

G2 G2 G2 G2 GM

• Zm ⊆ {ζ i2
m
: 0 ≤ i ≤ M− 1} (ζ : primitive element of F∗

p )
• For β ∈ Zk+1,

• gcd(gk, X2 − β) =

{
X− αi (simple root)
(X− αi)(X− αj) (multiple root)

• Multiple roots: If β = ζe,

αi, αj ∈ {ζe/2, ζ(e+2
mM)/2}

7/15



Using Graeffe transforms

f g1 g2 … gm gm+1

Z(f) Z1 Z2 … Zm {1}

G2 G2 G2 G2 GM

• Zm ⊆ {ζ i2
m
: 0 ≤ i ≤ M− 1} (ζ : primitive element of F∗

p )

• For β ∈ Zk+1,

• gcd(gk, X2 − β) =

{
X− αi (simple root)
(X− αi)(X− αj) (multiple root)

• Multiple roots: If β = ζe,

αi, αj ∈ {ζe/2, ζ(e+2
mM)/2}

7/15



Using Graeffe transforms

f g1 g2 … gm gm+1

Z(f) Z1 Z2 … Zm {1}

G2 G2 G2 G2 GM

• Zm ⊆ {ζ i2
m
: 0 ≤ i ≤ M− 1} (ζ : primitive element of F∗

p )

• For β ∈ Zk+1,

• gcd(gk, X2 − β) =

{
X− αi (simple root)
(X− αi)(X− αj) (multiple root)

• Multiple roots: If β = ζe,

αi, αj ∈ {ζe/2, ζ(e+2
mM)/2}

7/15



Using Graeffe transforms

f g1 g2 … gm gm+1

Z(f) Z1 Z2 … Zm {1}

G2 G2 G2 G2 GM

• Zm ⊆ {ζ i2
m
: 0 ≤ i ≤ M− 1} (ζ : primitive element of F∗

p )
• For β ∈ Zk+1,

• gcd(gk, X2 − β) =

{
X− αi (simple root)
(X− αi)(X− αj) (multiple root)

• Multiple roots: If β = ζe,

αi, αj ∈ {ζe/2, ζ(e+2
mM)/2}

7/15



Using Graeffe transforms

f g1 g2 … gm gm+1

Z(f) Z1 Z2 … Zm {1}

G2 G2 G2 G2 GM

• Zm ⊆ {ζ i2
m
: 0 ≤ i ≤ M− 1} (ζ : primitive element of F∗

p )
• For β ∈ Zk+1,

• gcd(gk, X2 − β) =

{
X− αi (simple root)
(X− αi)(X− αj) (multiple root)

• Multiple roots: If β = ζe,

αi, αj ∈ {ζe/2, ζ(e+2
mM)/2}

7/15



Deterministic complexity

Theorem

Given f ∈ Fq[X] satisfying (A), the irreducible factorization of
(q− 1) and a primitive element of F∗

q , the roots of f can be
computed in time

Õ(
√
S1(q− 1)d log2 q) + (d log2 q)1+o(1)

where S1(q− 1) is the largest factor of q− 1.

• Based on:
• Modular composition [Kedlaya-Umans (2008)]
• Fast discrete logarithms in F∗

q [Pohlig-Hellman (1978)]
• Computation of roots à la Pollard-Strassen [Shoup (1991)]

• Refines Shoup's complexity bounds

8/15



Deterministic complexity

Theorem

Given f ∈ Fq[X] satisfying (A), the irreducible factorization of
(q− 1) and a primitive element of F∗

q , the roots of f can be
computed in time

Õ(
√
S1(q− 1)d log2 q) + (d log2 q)1+o(1)

where S1(q− 1) is the largest factor of q− 1.

• Based on:
• Modular composition [Kedlaya-Umans (2008)]
• Fast discrete logarithms in F∗

q [Pohlig-Hellman (1978)]
• Computation of roots à la Pollard-Strassen [Shoup (1991)]

• Refines Shoup's complexity bounds

8/15



Deterministic complexity

Theorem

Given f ∈ Fq[X] satisfying (A), the irreducible factorization of
(q− 1) and a primitive element of F∗

q , the roots of f can be
computed in time

Õ(
√
S1(q− 1)d log2 q) + (d log2 q)1+o(1)

where S1(q− 1) is the largest factor of q− 1.

• Based on:
• Modular composition [Kedlaya-Umans (2008)]
• Fast discrete logarithms in F∗

q [Pohlig-Hellman (1978)]
• Computation of roots à la Pollard-Strassen [Shoup (1991)]

• Refines Shoup's complexity bounds
8/15



Randomization



Tangent Graeffe transform

Definition

The tangent Graeffe transform of order π of f ∈ Fp[X] is

Gπ(f+ εf′) ∈ (Fp[ε]/⟨ε2⟩)[X].

Remarks:
• (f+ εf′)(X) = f(X+ ε)

• G2(f+ εf′) = G2(f) + εg with g(X2) = f(X)f′(−X) + f(−X)f′(X)

Lemma

Let g+ εg = G2ℓ(f+ εf′). A nonzero root β of g is simple iff
g(β) ̸= 0. The corresponding root of f is α = 2ℓβg′(β)/g(β).

9/15



Tangent Graeffe transform

Definition

The tangent Graeffe transform of order π of f ∈ Fp[X] is

Gπ(f+ εf′) ∈ (Fp[ε]/⟨ε2⟩)[X].

Remarks:
• (f+ εf′)(X) = f(X+ ε)

• G2(f+ εf′) = G2(f) + εg with g(X2) = f(X)f′(−X) + f(−X)f′(X)

Lemma

Let g+ εg = G2ℓ(f+ εf′). A nonzero root β of g is simple iff
g(β) ̸= 0. The corresponding root of f is α = 2ℓβg′(β)/g(β).

9/15



Tangent Graeffe transform

Definition

The tangent Graeffe transform of order π of f ∈ Fp[X] is

Gπ(f+ εf′) ∈ (Fp[ε]/⟨ε2⟩)[X].

Remarks:
• (f+ εf′)(X) = f(X+ ε)

• G2(f+ εf′) = G2(f) + εg with g(X2) = f(X)f′(−X) + f(−X)f′(X)

Lemma

Let g+ εg = G2ℓ(f+ εf′). A nonzero root β of g is simple iff
g(β) ̸= 0. The corresponding root of f is α = 2ℓβg′(β)/g(β).

9/15



Randomized algorithm

Goal: Ensure many simple roots

• Replace f by fτ (X) = f(X+ τ) for a random τ ∈ Fp.

Lemma

If 2ℓ ≤ p−1
d(d−1) , G2ℓ(fτ ) has no multiple root with prob. ≥ 1/2.

f(X+ τ + ε) … gℓ + εgℓ … gm + εgm

Z0⊂

Z(f)

Zℓ … Zm⊂

{ξe : 0 ≤ e < M}

G2 G2 G2 G2

simple roots

recursive call:
f/
∏

α∈Z0(X− α)

10/15



Randomized algorithm

Goal: Ensure many simple roots

• Replace f by fτ (X) = f(X+ τ) for a random τ ∈ Fp.

Lemma

If 2ℓ ≤ p−1
d(d−1) , G2ℓ(fτ ) has no multiple root with prob. ≥ 1/2.

f(X+ τ + ε) … gℓ + εgℓ … gm + εgm

Z0⊂

Z(f)

Zℓ … Zm⊂

{ξe : 0 ≤ e < M}

G2 G2 G2 G2

simple roots

recursive call:
f/
∏

α∈Z0(X− α)

10/15



Randomized algorithm

Goal: Ensure many simple roots

• Replace f by fτ (X) = f(X+ τ) for a random τ ∈ Fp.

Lemma

If 2ℓ ≤ p−1
d(d−1) , G2ℓ(fτ ) has no multiple root with prob. ≥ 1/2.

f(X+ τ + ε) … gℓ + εgℓ … gm + εgm

Z0⊂

Z(f)

Zℓ … Zm⊂

{ξe : 0 ≤ e < M}

G2 G2 G2 G2

simple roots

recursive call:
f/
∏

α∈Z0(X− α)

10/15



Randomized algorithm

Goal: Ensure many simple roots

• Replace f by fτ (X) = f(X+ τ) for a random τ ∈ Fp.

Lemma

If 2ℓ ≤ p−1
d(d−1) , G2ℓ(fτ ) has no multiple root with prob. ≥ 1/2.

f(X+ τ + ε) … gℓ + εgℓ … gm + εgm

Z0⊂

Z(f)

Zℓ … Zm⊂

{ξe : 0 ≤ e < M}

G2 G2 G2 G2

simple roots

recursive call:
f/
∏

α∈Z0(X− α)

10/15



Randomized algorithm

Goal: Ensure many simple roots

• Replace f by fτ (X) = f(X+ τ) for a random τ ∈ Fp.

Lemma

If 2ℓ ≤ p−1
d(d−1) , G2ℓ(fτ ) has no multiple root with prob. ≥ 1/2.

f(X+ τ + ε) … gℓ + εgℓ … gm + εgm

Z0⊂

Z(f)

Zℓ … Zm⊂

{ξe : 0 ≤ e < M}

G2 G2 G2 G2

simple roots

recursive call:
f/
∏

α∈Z0(X− α)

10/15



Randomized algorithm

Goal: Ensure many simple roots

• Replace f by fτ (X) = f(X+ τ) for a random τ ∈ Fp.

Lemma

If 2ℓ ≤ p−1
d(d−1) , G2ℓ(fτ ) has no multiple root with prob. ≥ 1/2.

f(X+ τ + ε) … gℓ + εgℓ … gm + εgm

Z0⊂

Z(f)

Zℓ … Zm⊂

{ξe : 0 ≤ e < M}

G2 G2 G2 G2

simple roots

recursive call:
f/
∏

α∈Z0(X− α)

10/15



Randomized algorithm

Goal: Ensure many simple roots

• Replace f by fτ (X) = f(X+ τ) for a random τ ∈ Fp.

Lemma

If 2ℓ ≤ p−1
d(d−1) , G2ℓ(fτ ) has no multiple root with prob. ≥ 1/2.

f(X+ τ + ε) … gℓ + εgℓ … gm + εgm

Z0⊂

Z(f)

Zℓ … Zm⊂

{ξe : 0 ≤ e < M}

G2 G2 G2 G2

simple roots

recursive call:
f/
∏

α∈Z0(X− α)

10/15



Randomized complexity

Theorem

Given f ∈ Fp[X] satisfying (A) and a primitive element of F∗
p , the

randomized algorithm runs in expected time Õ(d log2 p), for
p = M · 2m + 1 with M = O(logp).

• Same asymptotic as Rabin's algorithm
• Better efficiency in practice
• Primitive elements easy to compute in practice

11/15



Randomized complexity

Theorem

Given f ∈ Fp[X] satisfying (A) and a primitive element of F∗
p , the

randomized algorithm runs in expected time Õ(d log2 p), for
p = M · 2m + 1 with M = O(logp).

• Same asymptotic as Rabin's algorithm
• Better efficiency in practice
• Primitive elements easy to compute in practice

11/15



Heuristic algorithm

Heuristic

If 2ℓ ≃ p/d, G2ℓ(f(X+ τ)) has Ω(d) simple roots with probability
≥ 1/2, for a random τ ∈ Fp.

Justification: holds for a random f rather than f(X+ τ).

f(X+ τ + ε) gℓ + εgℓ

ZℓZ0

G2ℓ

simple roots

recursive call:
f/
∏

α∈Z0(X− α)

12/15



Heuristic algorithm

Heuristic

If 2ℓ ≃ p/d, G2ℓ(f(X+ τ)) has Ω(d) simple roots with probability
≥ 1/2, for a random τ ∈ Fp.

Justification: holds for a random f rather than f(X+ τ).

f(X+ τ + ε) gℓ + εgℓ

ZℓZ0

G2ℓ

simple roots

recursive call:
f/
∏

α∈Z0(X− α)

12/15



Heuristic algorithm

Heuristic

If 2ℓ ≃ p/d, G2ℓ(f(X+ τ)) has Ω(d) simple roots with probability
≥ 1/2, for a random τ ∈ Fp.

Justification: holds for a random f rather than f(X+ τ).

f(X+ τ + ε) gℓ + εgℓ

ZℓZ0

G2ℓ

simple roots

recursive call:
f/
∏

α∈Z0(X− α)

12/15



Heuristic algorithm

Heuristic

If 2ℓ ≃ p/d, G2ℓ(f(X+ τ)) has Ω(d) simple roots with probability
≥ 1/2, for a random τ ∈ Fp.

Justification: holds for a random f rather than f(X+ τ).

f(X+ τ + ε) gℓ + εgℓ

ZℓZ0

G2ℓ

simple roots

recursive call:
f/
∏

α∈Z0(X− α)

12/15



Heuristic algorithm

Heuristic

If 2ℓ ≃ p/d, G2ℓ(f(X+ τ)) has Ω(d) simple roots with probability
≥ 1/2, for a random τ ∈ Fp.

Justification: holds for a random f rather than f(X+ τ).

f(X+ τ + ε) gℓ + εgℓ

ZℓZ0

G2ℓ

simple roots

recursive call:
f/
∏

α∈Z0(X− α)

12/15



Heuristic complexity

Theorem

Suppose that f is chosen at random in Fp[X] or that the
heuristic holds. Given a primitive element of F∗

p , the heuristic
algorithm runs in expected time Õ(d log2 p), for p = M · 2m + 1
with M = O(logp).

13/15



Running times



Timings

p = 7 · 226 + 1

8 10 12 14 16 18
0

5

10

15

20

25

Degree in log scale

Ti
m
e
(s
ec
on
ds
)

flint
ntl
mmx (randomized alg.)
mmx (heuristic alg.)

14/15



Timings

p = 5 · 255 + 1

8 10 12 14 16 18
0

100

200

300

400

Degree in log scale

Ti
m
e
(s
ec
on
ds
)

flint
mmx (randomized alg.)
mmx (modified Rabin's alg.)
mmx (heuristic alg.)

14/15



Conclusion

• Revisit classical algorithms for FFT finite fields

• New approach using Graeffe transforms

✓ deterministic complexity bounds
✓ probabilistic complexity bounds
✓ running times

• Source code in C++ within Mathemagix
• Not the bottleneck anymore for sparse interpolation
• Open questions:

? Deterministic alg.: use of tangent Graeffe transforms
? Heuristic alg.: Graeffe transform of order 2ℓ
? Prove the heuristic

Merci de votre attention !

15/15



Conclusion

• Revisit classical algorithms for FFT finite fields
• New approach using Graeffe transforms
✓ deterministic complexity bounds
✓ probabilistic complexity bounds
✓ running times

• Source code in C++ within Mathemagix
• Not the bottleneck anymore for sparse interpolation
• Open questions:

? Deterministic alg.: use of tangent Graeffe transforms
? Heuristic alg.: Graeffe transform of order 2ℓ
? Prove the heuristic

Merci de votre attention !

15/15



Conclusion

• Revisit classical algorithms for FFT finite fields
• New approach using Graeffe transforms
✓ deterministic complexity bounds
✓ probabilistic complexity bounds
✓ running times

• Source code in C++ within Mathemagix

• Not the bottleneck anymore for sparse interpolation
• Open questions:

? Deterministic alg.: use of tangent Graeffe transforms
? Heuristic alg.: Graeffe transform of order 2ℓ
? Prove the heuristic

Merci de votre attention !

15/15



Conclusion

• Revisit classical algorithms for FFT finite fields
• New approach using Graeffe transforms
✓ deterministic complexity bounds
✓ probabilistic complexity bounds
✓ running times

• Source code in C++ within Mathemagix
• Not the bottleneck anymore for sparse interpolation

• Open questions:

? Deterministic alg.: use of tangent Graeffe transforms
? Heuristic alg.: Graeffe transform of order 2ℓ
? Prove the heuristic

Merci de votre attention !

15/15



Conclusion

• Revisit classical algorithms for FFT finite fields
• New approach using Graeffe transforms
✓ deterministic complexity bounds
✓ probabilistic complexity bounds
✓ running times

• Source code in C++ within Mathemagix
• Not the bottleneck anymore for sparse interpolation
• Open questions:

? Deterministic alg.: use of tangent Graeffe transforms
? Heuristic alg.: Graeffe transform of order 2ℓ
? Prove the heuristic

Merci de votre attention !

15/15



Conclusion

• Revisit classical algorithms for FFT finite fields
• New approach using Graeffe transforms
✓ deterministic complexity bounds
✓ probabilistic complexity bounds
✓ running times

• Source code in C++ within Mathemagix
• Not the bottleneck anymore for sparse interpolation
• Open questions:

? Deterministic alg.: use of tangent Graeffe transforms
? Heuristic alg.: Graeffe transform of order 2ℓ
? Prove the heuristic

Merci de votre attention !
15/15


	Adapt old algorithms
	New technique: Graeffe transform
	Randomization
	Running times

