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Shifted Popov form of a matrix: problem and result

Hermite and Popov forms

A € K[X]™*™ nonsingular

~> via elementary row operations,
transform A into

Hermite form [Hermite, 1851] Popov form [Popov, 1972]

triangular row reduced
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Shifted Popov form of a matrix: problem and result

Hermite and Popov forms

A € K[X]™*™ nonsingular

~> via elementary row operations,
transform A into

Hermite form [Hermite, 1851] Popov form [Popov, 1972]

triangular

row reduced
column normalized

column normalized

4 7 0 15
37 01 0
1 5 3 2

36 1 2 6 0 1 6

Invariant: o = deg(det(A)) =4+7+34+2=7+1+2+6
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Shifted Popov form of a matrix: problem and result

Hermite and Popov forms

A € K[X]™*™ nonsingular
~> via elementary row operations,

transform A into

Hermite form [Hermite, 1851]

basis of M C K[X]**™ of rank m

~~ find the reduced Grobner basis

of M for either term order

Popov form [Popov, 1972]

triangular

column normalized

W= WP
S 01 N

= W

row reduced

}POT

7 01

01
2

6 0 1

) TOP
column normalized

5
0

Invariant: o = deg(det(A)) =4+74+34+2=7+1+2+6

— dimension of K[X]'*™/M as a K-vector space
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Example: constrained bivariate interpolation

As in Guruswami-Sudan list-decoding of Reed-Solomon codes

M of degree o; L of degree < o

y B}
—L 1
A= —12 1
Problem: find p= [p1 -+ pm] € RowSpace(A) such that

(%) deg(p;) < N; for all j

Approach:
@ compute the Popov form P of A with degree weights on the columns
@ return row of P which satisfies (x)
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Shifted Popov form

degree shift: s = (s1,...,Sm) € Z™ acting as additive weights
~~ shifted row reduced: minimizes the s-degree of p= [p1 -+ pm]

rdeg,(p) = mjax(deg(pj) +s57)
Degree constraints: deg(p;) < N for all j < rdeg(_p,, . _n,)(P) <0

s-Popov form = s-row reduced + column normalized J

Canonical form:
UA = P for unique unimodular U and s-Popov form P
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Shifted Popov form of a matrix: problem and result

Shifted Popov form: examples

Connects Popov and Hermite forms. Examples with m = 4,0 = 16:

4 3 3 3 7 01 5
s =(0,0,0,0) 3 4 3 3 0 1 0
Popov 3 3 4 3 2

3 3 3 4 |6 0 1 6
7 4 2 0] [8 5 1 ]
s =(0,2,4,6) 6 5 2 0 7 6 1
s-Popov 6 4 3 0 -
6 4 2 1] o 1 0f
16 (4 1
52(070720730) 15 0 3 7
Hermite 15 0 15 3
15 o] [3 6 1 2

Recall: §1 + -+ + 0m = 0 = deg(det(A)) = deg(det(P))

~» for P, average column degree: o/m = size: O(mo)
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Shifted Popov form of a matrix: problem and result

Degrees and target costs

measure oc<- 1/O size target cost
degree of matrix d md O(m?d) O(m“d)
avg. row degree p/m p O(m?p/m) O(m®p/m)
avg. column degree v/m ¥ O(m?y/m) O(m“~/m)
generic det. bound o(A) o(A) O(m?c(A)/m) O(m“a(A)/m)
Example:
Mo e d=o O(m*o)
A | L 1 o p/m=xo O(m“o)
; _ e y/m=o/m O(m*“a/m)
—pm=t 1 o o(A)/m=0/m O(m“c /m)

Generic determinant bound:

o(A) = max Y deg(ajr,)

TESM

1<i<m
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Shifted Popov form of a matrix: problem and result
Result

Problem

Input: A € K[X]™*™ square nonsingular
shift s € Z™
Output: the s-Popov form P of A

Previous fastest algorithm: O(m“(d + amp(s))), deterministic
[Gupta-Sarkar-Storjohann-Valeriote, 2012] + [Sarkar-Storjohann, 2011]
amp(s) = max(s) — min(s) is between 0 and m?d

~~ worst-case O(m“T2d)
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Shifted Popov form of a matrix: problem and result
Result

Problem

Input: A € K[X]™*™ square nonsingular
shift s € Z™
Output: the s-Popov form P of A

Previous fastest algorithm: O(m“(d + amp(s))), deterministic
[Gupta-Sarkar-Storjohann-Valeriote, 2012] + [Sarkar-Storjohann, 2011]
amp(s) = max(s) — min(s) is between 0 and m?d

~~ worst-case O(m“T2d)

Here: O(m“a(A)/m) C O(m“d), probabilistic
@ no dependency in s (except in log factors)

@ takes some degree structure into account:
o(A)/m < avg. row degree, avg. column degree
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Reduction to deg(A) < o(A)/m

Problem

Input: A € K[X]™*™ square nonsingular
shift s € Z™
Output: the s-Popov form P of A

With no field operation, one can build
o A c K[x]™xm
oteZm

such that
o M < 3m and deg(A) < [o(A)/m],

@ s-Popov form of A = principal submatrix of the t-Popov form of A

v

thanks to partial linearization techniques [Gupta et al., 2012]
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Reduction to system of linear modular equations

lterative Popov form algorithm

[Wolovich, 1974] and [Mulders-Storjohann, 2003]
Row reduction:

3200 3200 3200
A_|4 500 _ 4500 _ |4500 _p
T2 0 21 2 0 2 1 2 0 2 1|
3 2 3 2 3 2 2 2 2 2 2 2

Column normalization:

[3 2 0 O] [3 2 0 O] [3 2 0 O]
R_|# 500 _ Jaso00 _ J2511|_,
12 0 2 1 2 0 2 1 2 0 2 1|
2 2 2 2 2 2 1 2 2 2 1 2

Cost bound: O(m3d?)

~~ incorporate

e fast matrix multiplication O(m“) ?

e fast polynomial arithmetic O(d) ?
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Reduction to system of linear modular equations

Obstacle: size of the transformation
unimodular transformation U may have size beyond O(m“d)

Example:
e A unimodular: A“lA =1,

e P=1, forany s

eU=A"1!
A U=A"!
0 0
d 0 d 0
d 0 . 2d d 0
d 0 (m-1)d --- 2d d 0
degree d sum of degrees ©(m3d)
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Fast Popov form

Step 1: fast row reduction Step 2: fast column normalization
O(m“d) O(m*d)
[Giorgi et al., 2003], probabilistic [Sarkar-Storjohann, 2011]

[Gupta et al., 2012], deterministic

[Giorgi et al., 2003]:
@ Expansion of A~! is ultimately linearly recurrent
e Find 2d + 1 high-degree terms B in expansion of A~!

*
@ Reconstruct R as B = — mod X?2d+1

~~ uses deg(R) < d, which does not hold for arbitrary shifts
(even deg(P) may be md)
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Obstacle: size of a shifted row reduced form

Shifted Popov form via

A Step 1: shifted row reduction Step 2: column normalization

R P

Obstacle: worst-case deg(R) = ©(d + amp(s))
with amp(s) = max(s) — min(s)

Example: A unimodular, shift s = (0,...,0, md,..., md)
~ s-row reduced form of A

0 -
0
0
= md md md 0
md md md 0
Lmd md md 0]

size ©(m3d) beyond target cost
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Hermite form in O(m“d)

[Gupta-Storjohann, 2011], [Gupta, 2011]:

Step 1: Smith form computation: UAV = S (probabilistic)
~» modular equations describing RowSpace(A)

Step 2: find pivot degrees § = (01, ...,0m) by triangularization
from a matrix involving VV and S

Step 3: use d to find Hermite basis of solutions to the equations

[Zhou, 2012], [Zhou-Labahn, 2016]:

Step 1: find pivot degrees § by (partial) triangularization
(using kernel bases and column bases, deterministic)

Step 2: use 4 to find Hermite form of A

s-Popov form not triangular for arbitrary s
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Reduction to system of linear modular equations

Reduction to linear modular equations: example
M 1 M
L 1 L1 1
I, - 1 L 1 _ 1
L 1] L 1 1
~ for p = [p1 P
S
L
p € RowSpace(A) < [p1 -+ pm] L | =0mod M
Lmlfl
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Reduction to system of linear modular equations

Reduction to system of modular equations

Smith form of A:

UAV = diag(1,...,1,my,...,m,)

Consider M = (my,...,my) and [0 | F] =V mod (1,...,1,90)
~» (9M, F) computed in probabilistic O(m“d)  [Gupta-Storjohann, 2011]
Then

RowSpace(A) = {p € K[X]**™ | pF =0 mod 91}

~~ s-Popov form of A = s-Popov basis of solutions for (2, F)
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Shifted Popov bases of solutions to systems of modular equations

Linear systems of modular equations

Input: nonzero moduli M = (myq,...,m,)
system matrix F € K[X]7*" with deg(F. ;) < deg(m;)
shift s € Z™
Output: P the s-Popov solution basis for (91, F)
for T = deg(ml) + .4+ deg(mn), I/O SiZe ‘ target cost
=S ~
deg(det(P)) < o O(mo) ‘ O(m*~ o)
Order bases: m; =--- =m, = X7/"  ~ O(m“ o)

[Giorgi et al., 2003] [Storjohann, 2006] [Zhou-Labahn, 2012] [Jeannerod et al., 2016]

Interpolation bases: m; = product of known linear factors ~~ O(m*~10)
[Beckermann-Labahn, 2000] [Jeannerod et al., 2015+-2016]

Here: O(m*~1o) for arbitrary moduli, n € O(m)
Fast computation of shifted Popov forms RAIM, June 2016 16 / 20



Overview of the algorithm

Similarly to [Jeannerod et al., 2016] for interpolation bases,
divide-and-conquer on n (number of equations):

o recursive calls give P() and P(®) ~» P = ColumnNormalize(P(?P(1)
@ deduce s-pivot degrees § of P
e compute P when knowing § [Gupta-Storjohann, 2011]

~~ base case: one equation

Difficulty: no recurrence relations like in order/interpolation bases
~ compute a shifted Popov kernel basis with arbitrary shift:

pF=0modm <& forsomegq, [p q][;]:O

New divide-and-conquer approach on the shift
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New divide-and-conquer approach on the shift
Recall deg(F) < deg(m) = o
Reduction to kernel basis:

[P q] = (s, min(s))-Popov kernel basis of [:J
Reduction to order basis:

i

. *] = (s, min(s))-Popov order basis for [:J and amp(s) + 20

~~ Base case: amp(s) € O(c), cost O(m*“~15) [Jeannerod et al., 2016]

Divide-and-conquer on amp(s):

1) ,
s= (s s?)), F= [E(z)] with amp(s()) ~ amp(s)/2

Vincent Neiger (ENS de Lyon) Fast computation of shifted Popov forms RAIM, June 2016 18 / 20



Shifted Popov bases of solutions to systems of modular equations

New divide-and-conquer approach on the shift

@ recursive call to find splitting index and 8(1):

[P(l) 0

. *] = s(1_Popov sol. basis for (F(l),m) ~» UpdateSplit(s, F)

@ residual computation thanks to known 5.

P1) o q(l) F1) 0 F)
A= | « PO & | =u-order basis for |F®| ~ |G| =A |F®
0 q m n m

@ recursive call to find 8®) ~» s-pivot degree § = (6(),5() 4 §()
P?) = (s® 4+ 6(®)-Popov sol. basis for (G, n)

© compute P from & via order basis at order O(o)
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Shifted Popov bases of solutions to systems of modular equations

Conclusion

Linear systems of modular equations
o O(m“ o)
@ return basis of solutions
@ in s-Popov form
°

deterministic

Shifted row reduction of polynomial matrices
o O(m“1o(A))
@ return s-Popov form

@ probabilistic

Vincent Neiger (ENS de Lyon) Fast computation of shifted Popov forms RAIM, June 2016 20 / 20



Shifted Popov bases of solutions to systems of modular equations

Example: constrained bivariate interpolation

As in Guruswami-Sudan list-decoding of Reed-Solomon codes:
M={Q=0ejcm GX)YI €KIX, Y] | Qxi, 1) =0 for 1< i <}

Define M = (X —x1)--- (X — x,) and L € K[X] s.t. L(x;) =i

M M
Y—-L —L 1
. 2 _ g2 g2
~~ basis of M: L +— A= L 1
mel mel mel 1
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Shifted Popov bases of solutions to systems of modular equations

Example: constrained bivariate interpolation
As in Guruswami-Sudan list-decoding of Reed-Solomon codes:
M={Q = Tojem GX)Y €KIX, Y]] Qlx;, i) = 0for 1< i < o}

Define M = (X —x1)--- (X — x,) and L € K[X] s.t. L(x;) =i

M M
Y—-L —L 1
. 2 _ g2 2
~> basis of M: y°-L +—— A= L 1
mel _ mel _mel 1

Problem: find Q € M satisfying deg(Q;) < Nj for 0 <j < m
Approach:

@ compute the Popov form P of A with degree weights on the columns
@ return row of P which satisfies (iir)
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Shifted Popov bases of solutions to systems of modular equations

Reduction to linear modular equations: example

M 1 M
-L 1 L1 1
I =(13 1 (i3 1 _ 1
m =
L2 1] |Lmt 1 1

In other words, for Q = 5. Qi(X)Y/,

Q(xj,yi) =0foralli < [Qo Qm_l] L2 | = 0 mod M

Lm—l
& Q(X,L)=0mod M
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Shifted Popov bases of solutions to systems of modular equations

Previous algorithms

Here, x = probabilistic algorithm, d = deg(A)

Algorithm Problem Cost bound
[Hafner-McCurley, 1991] Hermite form O(m*d)
[Storjohann-Labahn, 1996] Hermite form O(m“T1d)
[Villard, 1996] Popov & Hermite forms ~ O(m“*1d + (md)*)
[Alekhnovich, 2002] weak Popov form O(m=+1d)
[Mulders-Storjohann, 2003] Popov & Hermite forms O(m 3d?)
[Giorgi et al., 2003] 0-reduction (’)(m“’d) *
[1] = [Sarkar-Storjohann, 2011]  Popov form of 0-reduced O(m“’d)
[Gupta-Storjohann, 2011] Hermite form O(m“’d) *
[2] = [Gupta et al., 2012] 0-reduction O(m*d)
[Zhou-Labahn, 2012/2016] Hermite form O(m¥d)
[1] + [2] s-Popov form for any s O(m*(d + amp(s)))

Vincent Neiger (ENS de Lyon) Fast computation of shifted Popov forms RAIM, June 2016 20 / 20



Shifted Popov bases of solutions to systems of modular equations

Iterative Popov form algorithm

[Wolovich, 1974] and [Mulders-Storjohann, 2003]
Row reduction:

A=1y 0 21| —
3 232

w N
N o
NN
N

Column normalization:

Cost bound: O(m3d?)
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Shifted Popov bases of solutions to systems of modular equations

Iterative Popov form algorithm
[Wolovich, 1974] and [Mulders-Storjohann, 2003]
Row reduction:
3200 3200
A=lo 0 2 1| — — =R
3 2 3 2 32 2 2 2 2 2 2

Column normalization:

Cost bound: O(m3d?)
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Shifted Popov bases of solutions to systems of modular equations

Iterative Popov form algorithm

[Wolovich, 1974] and [Mulders-Storjohann, 2003]
Row reduction:

3200
A= — —

2 0 21
3 2 3 2 32 2 2

NN bW
N O 01N
NN OO
N = OO

Column normalization:

Cost bound: O(m3d?)
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Shifted Popov bases of solutions to systems of modular equations

lterative Popov form algorithm

[Wolovich, 1974] and [Mulders-Storjohann, 2003]

Row reduction:

A=l 0 2 1
3 2 3 2]
Column normalization:
[3 2 0 O]

4 5 0 0

= 2 0 2 1

2 2 2 2

Cost bound: O(m3d?)

Vincent Neiger (ENS de Lyon)
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Shifted Popov bases of solutions to systems of modular equations

lterative Popov form algorithm

[Wolovich, 1974] and [Mulders-Storjohann, 2003]

Row reduction:

A=l 0 2 1
3 2 3 2]
Column normalization:
[3 2 0 O]

4 5 0 0

= 2 0 2 1

2 2 2 2

Cost bound: O(m3d?)
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NN bW

NN DN W

N O 01N

N O o1 N

0 0
0 0
2 1| =R
2 2]
0 0]
11
2 1| =P
1 2
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Shifted Popov bases of solutions to systems of modular equations

lterative Popov form algorithm

[Wolovich, 1974] and [Mulders-Storjohann, 2003]

Row reduction:

A=l 0 2 1
3 2 3 2]
Column normalization:
[3 2 0 O]

4 5 0 0

= 2 0 2 1

2 2 2 2

Cost bound: O(m3d?)

~~ incorporate

3 2 0 0]
3 2 2 2
3 2 0 0
450 0
2 0 2 1
2 21 2

e fast matrix multiplication O(m®) ?
e fast polynomial arithmetic O(d) ?

Fast computation of shifted Popov forms

NN bW

NN DN W

N O 01N

N O o1 N

0 0
0 0
2 1| =R
2 2]
0 0]
11
2 1| =P
1 2
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