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Shifted Popov form of a matrix: problem and result

Hermite and Popov forms

A ∈ K[X ]m×m nonsingular
 via elementary row operations,
transform A into

basis of M⊂ K[X ]1×m of rank m
 find the reduced Gröbner basis
of M for either term order

Hermite form [Hermite, 1851] Popov form [Popov, 1972]

triangular

column normalized

}
POT

row reduced

column normalized

}
TOP


4
3 7
1 5 3
3 6 1 2




7 0 1 5
0 1 0

2
6 0 1 6



Invariant: σ = deg(det(A)) = 4 + 7 + 3 + 2 = 7 + 1 + 2 + 6

= dimension of K[X ]1×m/M as a K-vector space
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Shifted Popov form of a matrix: problem and result

Example: constrained bivariate interpolation

As in Guruswami-Sudan list-decoding of Reed-Solomon codes

M of degree σ; L of degree < σ

A =


M
−L 1
−L2 1

...
. . .

−Lm−1 1


Problem: find p =

[
p1 · · · pm

]
∈ RowSpace(A) such that

(?) deg(pj ) < Nj for all j

Approach:

compute the Popov form P of A with degree weights on the columns
return row of P which satisfies (?)
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Shifted Popov form of a matrix: problem and result

Shifted Popov form

degree shift: s = (s1, . . . , sm) ∈ Zm acting as additive weights

 shifted row reduced: minimizes the s-degree of p =
[
p1 · · · pm

]
rdegs(p) = max

j
(deg(pj ) + sj )

Degree constraints: deg(pj ) < Nj for all j ⇔ rdeg(−N1,...,−Nm)(p) < 0

s-Popov form = s-row reduced + column normalized

Canonical form:
UA = P for unique unimodular U and s-Popov form P
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Shifted Popov form of a matrix: problem and result

Shifted Popov form: examples

Connects Popov and Hermite forms. Examples with m = 4, σ = 16:

s = (0, 0, 0, 0)
Popov


4 3 3 3
3 4 3 3
3 3 4 3
3 3 3 4



7 0 1 5
0 1 0

2
6 0 1 6



s = (0, 2, 4, 6)
s-Popov


7 4 2 0
6 5 2 0
6 4 3 0
6 4 2 1



8 5 1
7 6 1

2
0 1 0



s = (0, σ, 2σ, 3σ)
Hermite


16
15 0
15 0
15 0



4
3 7
1 5 3
3 6 1 2


Recall: δ1 + · · ·+ δm = σ = deg(det(A)) = deg(det(P))
 for P, average column degree: σ/m ⇒ size: O(mσ)
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Shifted Popov form of a matrix: problem and result

Degrees and target costs

measure σ 6 · I/O size target cost

degree of matrix d md O(m2d) Õ(mωd)

avg. row degree ρ/m ρ O(m2ρ/m) Õ(mωρ/m)

avg. column degree γ/m γ O(m2γ/m) Õ(mωγ/m)

generic det. bound σ(A) σ(A) O(m2σ(A)/m) Õ(mωσ(A)/m)

Example:

A =


M
−L 1
−L2 1
...

. . .

−Lm−1 1


• d = σ Õ(mωσ)

• ρ/m ≈ σ Õ(mωσ)

• γ/m = σ/m Õ(mωσ/m)

• σ(A)/m = σ/m Õ(mωσ/m)

Generic determinant bound:

σ(A) = max
π∈Sm

∑
16i6m

deg(ai ,πi
) 6 min(ρ, γ) 6 md
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Shifted Popov form of a matrix: problem and result

Result

Problem

Input: A ∈ K[X ]m×m square nonsingular
shift s ∈ Zm

Output: the s-Popov form P of A

Previous fastest algorithm: Õ(mω(d + amp(s))), deterministic
[Gupta-Sarkar-Storjohann-Valeriote, 2012] + [Sarkar-Storjohann, 2011]
amp(s) = max(s)−min(s) is between 0 and m2d
 worst-case Õ(mω+2d)

Here: Õ(mωσ(A)/m) ⊆ Õ(mωd), probabilistic

no dependency in s (except in log factors)

takes some degree structure into account:
σ(A)/m 6 avg. row degree, avg. column degree
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Shifted Popov form of a matrix: problem and result

Reduction to deg(A) 6 σ(A)/m

Problem

Input: A ∈ K[X ]m×m square nonsingular
shift s ∈ Zm

Output: the s-Popov form P of A

With no field operation, one can build

Ã ∈ K[X ]m̃×m̃

t ∈ Zm̃

such that

m̃ 6 3m and deg(Ã) 6 dσ(A)/me,
s-Popov form of A = principal submatrix of the t-Popov form of Ã

thanks to partial linearization techniques [Gupta et al., 2012]
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Reduction to system of linear modular equations

Iterative Popov form algorithm

[Wolovich, 1974] and [Mulders-Storjohann, 2003]
Row reduction:

A =


3 2 0 0
4 5 0 0
2 0 2 1
3 2 3 2

 −→


3 2 0 0
4 5 0 0
2 0 2 1
3 2 2 2

 −→


3 2 0 0
4 5 0 0
2 0 2 1
2 2 2 2

 = R

Column normalization:

R =


3 2 0 0
4 5 0 0
2 0 2 1
2 2 2 2

 −→


3 2 0 0
4 5 0 0
2 0 2 1
2 2 1 2

 −→


3 2 0 0
2 5 1 1
2 0 2 1
2 2 1 2

 = P

Cost bound: O(m3d2)
 incorporate

fast matrix multiplication O(mω) ?

fast polynomial arithmetic Õ(d) ?
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Reduction to system of linear modular equations

Obstacle: size of the transformation

unimodular transformation U may have size beyond O(mωd)

Example:

A unimodular: A−1A = Im

P = Im for any s

U = A−1

A U = A−1
0
d 0

d 0
. . .

. . .

d 0

 −−−→


0
d 0

2d d 0
...

. . .
. . .

. . .

(m − 1)d · · · 2d d 0


degree d sum of degrees Θ(m3d)
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Reduction to system of linear modular equations

Fast Popov form

Step 1: fast row reduction Step 2: fast column normalization

Õ(mωd) Õ(mωd)
[Giorgi et al., 2003], probabilistic [Sarkar-Storjohann, 2011]
[Gupta et al., 2012], deterministic

[Giorgi et al., 2003]:

Expansion of A−1 is ultimately linearly recurrent

Find 2d + 1 high-degree terms B in expansion of A−1

Reconstruct R as B =
∗
R

mod X 2d+1

 uses deg(R) 6 d , which does not hold for arbitrary shifts
(even deg(P) may be md)
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Reduction to system of linear modular equations

Obstacle: size of a shifted row reduced form

Shifted Popov form via

A
Step 1: shifted row reduction−−−−−−−−−−−−−−−−−−−−→ R

Step 2: column normalization−−−−−−−−−−−−−−−−−−−−−→ P

Obstacle: worst-case deg(R) = Θ(d + amp(s))
with amp(s) = max(s)−min(s)

Example: A unimodular, shift s = (0, . . . , 0,md , . . . ,md)
 s-row reduced form of A

R =



0
0

0
md md md 0
md md md 0
md md md 0


size Θ(m3d) beyond target cost
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Reduction to system of linear modular equations

Hermite form in Õ(mωd)

[Gupta-Storjohann, 2011], [Gupta, 2011]:

Step 1: Smith form computation: UAV = S (probabilistic)
 modular equations describing RowSpace(A)

Step 2: find pivot degrees δ = (δ1, . . . , δm) by triangularization
from a matrix involving V and S

Step 3: use δ to find Hermite basis of solutions to the equations

[Zhou, 2012], [Zhou-Labahn, 2016]:

Step 1: find pivot degrees δ by (partial) triangularization
(using kernel bases and column bases, deterministic)

Step 2: use δ to find Hermite form of A

s-Popov form not triangular for arbitrary s
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Reduction to system of linear modular equations

Reduction to linear modular equations: example

Im


M
−L 1
−L2 1
...

. . .

−Lm−1 1




1
L 1
L2 1
...

. . .

Lm−1 1

 =


M

1
1

. . .

1



 for p =
[
p1 · · · pm

]
,

p ∈ RowSpace(A) ⇔
[
p1 · · · pm

]


1
L
L2

...
Lm−1

 = 0 mod M

⇔ p11 + p2L + · · ·+ pmLm−1 = 0 mod M
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Reduction to system of linear modular equations

Reduction to system of modular equations

Smith form of A:

UAV = diag(1, . . . , 1,m1, . . . ,mn)

Consider M = (m1, . . . ,mn) and [0 | F] = V mod (1, . . . , 1,M)

 (M,F) computed in probabilistic Õ(mωd) [Gupta-Storjohann, 2011]

Then
RowSpace(A) = {p ∈ K[X ]1×m | pF = 0 mod M}

 s-Popov form of A = s-Popov basis of solutions for (M,F)
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Shifted Popov bases of solutions to systems of modular equations

Linear systems of modular equations

Input: nonzero moduli M = (m1, . . . ,mn)
system matrix F ∈ K[X ]m×n with deg(F∗,j ) < deg(mj )
shift s ∈ Zm

Output: P the s-Popov solution basis for (M,F)

for σ = deg(m1) + · · ·+ deg(mn),
deg(det(P)) 6 σ

=⇒
I/O size target cost

O(mσ) Õ(mω−1σ)

Order bases: m1 = · · · = mn = X σ/n  Õ(mω−1σ)
[Giorgi et al., 2003] [Storjohann, 2006] [Zhou-Labahn, 2012] [Jeannerod et al., 2016]

Interpolation bases: mj = product of known linear factors  Õ(mω−1σ)
[Beckermann-Labahn, 2000] [Jeannerod et al., 2015+2016]

Here: Õ(mω−1σ) for arbitrary moduli, n ∈ O(m)
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Shifted Popov bases of solutions to systems of modular equations

Overview of the algorithm

Similarly to [Jeannerod et al., 2016] for interpolation bases,
divide-and-conquer on n (number of equations):

recursive calls give P(1) and P(2)  P = ColumnNormalize(P(2)P(1))

deduce s-pivot degrees δ of P

compute P when knowing δ [Gupta-Storjohann, 2011]

 base case: one equation

Difficulty: no recurrence relations like in order/interpolation bases
 compute a shifted Popov kernel basis with arbitrary shift:

pF = 0 mod m ⇔ for some q, [ p q ]

[
F
m

]
= 0

New divide-and-conquer approach on the shift
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Shifted Popov bases of solutions to systems of modular equations

New divide-and-conquer approach on the shift

Recall deg(F) < deg(m) = σ

Reduction to kernel basis:[
P q

]
= (s,min(s))-Popov kernel basis of

[
F
m

]
Reduction to order basis:[

P q
∗ ∗

]
= (s,min(s))-Popov order basis for

[
F
m

]
and amp(s) + 2σ

 Base case: amp(s) ∈ O(σ), cost Õ(mω−1σ) [Jeannerod et al., 2016]

Divide-and-conquer on amp(s):

s = (s(1), s(2)), F =

[
F(1)

F(2)

]
with amp(s(i)) ≈ amp(s)/2
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Shifted Popov bases of solutions to systems of modular equations

New divide-and-conquer approach on the shift

1 recursive call to find splitting index and δ(1):[
P(1) 0
∗ ∗

]
= s(1)-Popov sol. basis for (F(1),m)  UpdateSplit(s,F)

2 residual computation thanks to known δ(1):

A =

P(1) 0 q(1)

∗ P(0) ∗
∗ 0 q

 = u-order basis for

F(1)

F(2)

m

  

0G
n

 = A

F(1)

F(2)

m


3 recursive call to find δ(2)  s-pivot degree δ = (δ(1), δ(0) + δ(2))

P(2) = (s(2) + δ(0))-Popov sol. basis for (G, n)

4 compute P from δ via order basis at order O(σ)
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Shifted Popov bases of solutions to systems of modular equations

Conclusion

Linear systems of modular equations

Õ(mω−1σ)

return basis of solutions

in s-Popov form

deterministic

Shifted row reduction of polynomial matrices

Õ(mω−1σ(A))

return s-Popov form

probabilistic
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Shifted Popov bases of solutions to systems of modular equations

Example: constrained bivariate interpolation

As in Guruswami-Sudan list-decoding of Reed-Solomon codes:

M =
{
Q =

∑
06j<m Qj (X )Y j ∈ K[X ,Y ]

∣∣ Q(xi , yi ) = 0 for 1 6 i 6 σ
}

Define M = (X − x1) · · · (X − xσ) and L ∈ K[X ] s.t. L(xi ) = yi

 basis of M:


M

Y − L
Y 2 − L2

...
Y m−1 − Lm−1

 ←→ A =


M
−L 1
−L2 1
...

. . .

−Lm−1 1



Problem: find Q ∈M satisfying deg(Qj ) < Nj for 0 6 j < m
Approach:

compute the Popov form P of A with degree weights on the columns

return row of P which satisfies (iii)
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Shifted Popov bases of solutions to systems of modular equations

Reduction to linear modular equations: example

Im


M
−L 1
−L2 1
...

. . .

−Lm−1 1




1
L 1
L2 1
...

. . .

Lm−1 1

 =


M

1
1

. . .

1



In other words, for Q =
∑

j<m Qj (X )Y j ,

Q(xi , yi ) = 0 for all i ⇔
[
Q0 · · · Qm−1

]


1
L
L2

...
Lm−1

 = 0 mod M

⇔ Q(X , L) = 0 mod M
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Shifted Popov bases of solutions to systems of modular equations

Previous algorithms

Here, ? = probabilistic algorithm, d = deg(A)

Algorithm Problem Cost bound

[Hafner-McCurley, 1991] Hermite form Õ(m4d)

[Storjohann-Labahn, 1996] Hermite form Õ(mω+1d)

[Villard, 1996] Popov & Hermite forms Õ(mω+1d + (md)ω)

[Alekhnovich, 2002] weak Popov form Õ(mω+1d)
[Mulders-Storjohann, 2003] Popov & Hermite forms O(m3d2)

[Giorgi et al., 2003] 0-reduction Õ(mωd) ?

[1] = [Sarkar-Storjohann, 2011] Popov form of 0-reduced Õ(mωd)

[Gupta-Storjohann, 2011] Hermite form Õ(mωd) ?

[2] = [Gupta et al., 2012] 0-reduction Õ(mωd)

[Zhou-Labahn, 2012/2016] Hermite form Õ(mωd)

[1] + [2] s-Popov form for any s Õ(mω(d + amp(s)))
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Shifted Popov bases of solutions to systems of modular equations

Iterative Popov form algorithm

[Wolovich, 1974] and [Mulders-Storjohann, 2003]
Row reduction:

A =


3 2 0 0
4 5 0 0
2 0 2 1
3 2 3 2

 −→


3 2 0 0
4 5 0 0
2 0 2 1
3 2 2 2



−→


3 2 0 0
4 5 0 0
2 0 2 1
2 2 2 2

 = R

Column normalization:

R =


3 2 0 0
4 5 0 0
2 0 2 1
2 2 2 2

 −→


3 2 0 0
4 5 0 0
2 0 2 1
2 2 1 2



−→


3 2 0 0
2 5 1 1
2 0 2 1
2 2 1 2

 = P

Cost bound: O(m3d2)

 incorporate

fast matrix multiplication O(mω) ?

fast polynomial arithmetic Õ(d) ?
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