Fast computation of shifted Popov forms of polynomial matrices via systems of linear modular equations

Vincent Neiger

AriC, LIP, École Normale Supérieure de Lyon, France

University of Waterloo, Ontario, Canada

Partially supported by the mobility grants Explo'ra doc from Région Rhône-Alpes / Globalink Research Award - Inria from Mitacs & Inria / Programme Avenir Lyon Saint-Étienne

RAIM 2016, Banyuls-sur-Mer, June 29, 2016

Hermite and Popov forms

 $\mathbf{A} \in \mathbb{K}[X]^{m \times m}$ nonsingular \rightsquigarrow via elementary row operations, transform \mathbf{A} into

_	Hermite form [Hermite, 1851]	Popov form [Popov, 1972]
	triangular	row reduced

Hermite and Popov forms

 $\mathbf{A} \in \mathbb{K}[X]^{m \times m}$ nonsingular \rightsquigarrow via elementary row operations, transform \mathbf{A} into

Hermite form [Hermite, 1851]	Popov form [Popov, 1972]			
triangular column normalized	row reduced column normalized			
$\begin{bmatrix} 4 & & \\ 3 & 7 & \\ 1 & 5 & 3 & \\ 3 & 6 & 1 & 2 \end{bmatrix}$	$\begin{bmatrix} 7 & 0 & 1 & 5 \\ 0 & 1 & 0 \\ & 2 \\ 6 & 0 & 1 & 6 \end{bmatrix}$			

Invariant: $\sigma = \deg(\det(\mathbf{A})) = 4 + 7 + 3 + 2 = 7 + 1 + 2 + 6$

Hermite and Popov forms

 $\mathbf{A} \in \mathbb{K}[X]^{m \times m}$ nonsingular \rightsquigarrow via elementary row operations, transform \mathbf{A} into basis of $\mathcal{M} \subset \mathbb{K}[X]^{1 \times m}$ of rank m \rightsquigarrow find the reduced Gröbner basis of \mathcal{M} for either term order

Hermite form [Hermite, 1851]	Popov form [Popov, 1972]				
triangular column normalized	row reduced column normalized				
$\begin{bmatrix} 4 & & \\ 3 & 7 & \\ 1 & 5 & 3 \\ 3 & 6 & 1 & 2 \end{bmatrix}$	$\begin{bmatrix} 7 & 0 & 1 & 5 \\ 0 & 1 & 0 \\ & 2 \\ 6 & 0 & 1 & 6 \end{bmatrix}$				

Invariant: $\sigma = \deg(\det(\mathbf{A})) = 4 + 7 + 3 + 2 = 7 + 1 + 2 + 6$ = dimension of $\mathbb{K}[X]^{1 \times m} / \mathcal{M}$ as a \mathbb{K} -vector space

Example: constrained bivariate interpolation

As in Guruswami-Sudan list-decoding of Reed-Solomon codes

M of degree σ ; *L* of degree $< \sigma$

$$\mathbf{A} = \begin{bmatrix} M & & & \\ -L & 1 & & \\ -L^2 & 1 & & \\ \vdots & & \ddots & \\ -L^{m-1} & & & 1 \end{bmatrix}$$

Problem: find $\mathbf{p} = \begin{bmatrix} p_1 & \cdots & p_m \end{bmatrix} \in \operatorname{RowSpace}(\mathbf{A})$ such that $(\star) \quad \deg(p_j) < N_j$ for all j

Approach:

compute the Popov form P of A with degree weights on the columns

• return row of **P** which satisfies (*)

Vincent Neiger (ENS de Lyon)

Shifted Popov form

degree shift: $\mathbf{s} = (s_1, \ldots, s_m) \in \mathbb{Z}^m$ acting as additive weights

 \rightsquigarrow shifted row reduced: minimizes the **s**-degree of $\mathbf{p} = \begin{bmatrix} p_1 & \cdots & p_m \end{bmatrix}$

$$\operatorname{rdeg}_{\mathbf{s}}(\mathbf{p}) = \max_{j}(\operatorname{deg}(p_{j}) + s_{j})$$

Degree constraints: $\deg(p_j) < N_j$ for all $j \Leftrightarrow \operatorname{rdeg}_{(-N_1,...,-N_m)}(\mathbf{p}) < 0$

s-Popov form = s-row reduced + column normalized

Canonical form: UA = P for unique unimodular U and s-Popov form P

Vincent Neiger (ENS de Lyon)

Shifted Popov form: examples

Connects Popov and Hermite forms. Examples with $m = 4, \sigma = 16$:

$\begin{array}{c} \mathbf{s} = (0,0,0,0) \\ \\ \text{Popov} \end{array}$	4 3 3 3	3 4 3 3	3 3 4 3	3 3 3 4	7 0 6	0 1 0	1 2 1	5 0 <mark>6</mark>]
s = (0, 2, 4, 6) s-Popov	7 6 6 6	4 5 4 4	2 2 <mark>3</mark> 2	0 0 0 1	8 7 0	5 6 1	1 1 2	0
$\mathbf{s} = (0, \sigma, 2\sigma, 3\sigma)$ Hermite	16 15 15 15	0	0	0	4 3 1 3	7 5 6	3 1	2

Recall: $\delta_1 + \dots + \delta_m = \sigma = \deg(\det(\mathbf{A})) = \deg(\det(\mathbf{P}))$ \rightsquigarrow for **P**, average column degree: $\sigma/m \Rightarrow$ size: $\mathcal{O}(m\sigma)$

Degrees and target costs

measure	$\sigma \leqslant \cdot$	I/O size	target cost
degree of matrix d	md	$\mathcal{O}(m^2d)$	$\widetilde{\mathcal{O}}(m^\omega d)$
avg. row degree $ ho/m$	ho	$\mathcal{O}(m^2 ho/m)$	$\widetilde{\mathcal{O}}({\it m}^{\omega} ho/{\it m})$
avg. column degree γ/m	γ	$\mathcal{O}(m^2\gamma/m)$	$\widetilde{\mathcal{O}}({\it m}^{\omega}\gamma/{\it m})$
generic det. bound $\sigma(\mathbf{A})$	$\sigma(\mathbf{A})$	$\mathcal{O}(m^2\sigma(\mathbf{A})/m)$	$\widetilde{\mathcal{O}}(\textit{m}^{\omega}\sigma(\textbf{A})/\textit{m})$

Example:

		1]	•	$d = \sigma$	$\widetilde{\mathcal{O}}(\textit{m}^{\omega}\sigma)$
A =	$-L^2$	T	1		•	$ ho/\mathbf{m} pprox \sigma$	$\widetilde{\mathcal{O}}(m^\omega\sigma)$
	:		·.		٠	$\gamma/m = \sigma/m$	$\widetilde{\mathcal{O}}(m^\omega\sigma/m)$
	$-L^{m-1}$			1	•	$\sigma(\mathbf{A})/m = \sigma/m$	$\widetilde{\mathcal{O}}(\textit{m}^{\omega}\sigma/\textit{m})$

Generic determinant bound:

$$\sigma(\mathbf{A}) = \max_{\pi \in S_m} \sum_{1 \leqslant i \leqslant m} \overline{\deg}(a_{i,\pi_i}) \qquad \leqslant \min(\rho,\gamma) \leqslant md$$

Vincent Neiger (ENS de Lyon)

Result

Problem

Input: $\mathbf{A} \in \mathbb{K}[X]^{m \times m}$ square nonsingular shift $\mathbf{s} \in \mathbb{Z}^m$ Output: the **s**-Popov form **P** of **A**

Previous fastest algorithm: $\widetilde{O}(m^{\omega}(d + \operatorname{amp}(\mathbf{s})))$, deterministic [Gupta-Sarkar-Storjohann-Valeriote, 2012] + [Sarkar-Storjohann, 2011] $\operatorname{amp}(\mathbf{s}) = \max(\mathbf{s}) - \min(\mathbf{s})$ is between 0 and m^2d \rightsquigarrow worst-case $\widetilde{O}(m^{\omega+2}d)$

Result

Problem

Input:	$\mathbf{A} \in \mathbb{K}[X]^{m imes m}$ square nonsingular
	shift $\mathbf{s} \in \mathbb{Z}^m$
Output:	the s -Popov form P of A

Previous fastest algorithm: $\widetilde{O}(m^{\omega}(d + \operatorname{amp}(\mathbf{s})))$, deterministic [Gupta-Sarkar-Storjohann-Valeriote, 2012] + [Sarkar-Storjohann, 2011] $\operatorname{amp}(\mathbf{s}) = \max(\mathbf{s}) - \min(\mathbf{s})$ is between 0 and $m^2d \longrightarrow \operatorname{worst-case} \widetilde{O}(m^{\omega+2}d)$

Here: $\widetilde{\mathcal{O}}(m^{\omega}\sigma(\mathbf{A})/m) \subseteq \widetilde{\mathcal{O}}(m^{\omega}d)$, probabilistic

- no dependency in s (except in log factors)
- takes some degree structure into account:
 - $\sigma(\mathbf{A})/m \leqslant$ avg. row degree, avg. column degree

Reduction to deg(A) $\leq \sigma(A)/m$

Problem

Input: $\mathbf{A} \in \mathbb{K}[X]^{m \times m}$ square nonsingular shift $\mathbf{s} \in \mathbb{Z}^m$

Output: the s-Popov form P of A

With no field operation, one can build • $\widetilde{A} \in \mathbb{K}[X]^{\widetilde{m} \times \widetilde{m}}$ • $\mathbf{t} \in \mathbb{Z}^{\widetilde{m}}$

such that

- $\widetilde{m} \leqslant 3m$ and $\deg(\widetilde{\mathbf{A}}) \leqslant \lceil \sigma(\mathbf{A})/m \rceil$,
- s-Popov form of A = principal submatrix of the t-Popov form of A

thanks to partial linearization techniques

Vincent Neiger (ENS de Lyon) Fast computation

Fast computation of shifted Popov forms

[Gupta et al., 2012] RAIM, June 2016 8 / 20

[Wolovich, 1974] and [Mulders-Storjohann, 2003] Row reduction:

$$\mathbf{A} = \begin{bmatrix} 3 & 2 & 0 & 0 \\ 4 & 5 & 0 & 0 \\ 2 & 0 & 2 & 1 \\ 3 & 2 & 3 & 2 \end{bmatrix} \longrightarrow \begin{bmatrix} 3 & 2 & 0 & 0 \\ 4 & 5 & 0 & 0 \\ 2 & 0 & 2 & 1 \\ 3 & 2 & 2 & 2 \end{bmatrix} \longrightarrow \begin{bmatrix} 3 & 2 & 0 & 0 \\ 4 & 5 & 0 & 0 \\ 2 & 0 & 2 & 1 \\ 2 & 2 & 2 & 2 \end{bmatrix} = \mathbf{R}$$

Column normalization:

$$\mathbf{R} = \begin{bmatrix} 3 & 2 & 0 & 0 \\ 4 & 5 & 0 & 0 \\ 2 & 0 & 2 & 1 \\ 2 & 2 & 2 & 2 \end{bmatrix} \longrightarrow \begin{bmatrix} 3 & 2 & 0 & 0 \\ 4 & 5 & 0 & 0 \\ 2 & 0 & 2 & 1 \\ 2 & 2 & 1 & 2 \end{bmatrix} \longrightarrow \begin{bmatrix} 3 & 2 & 0 & 0 \\ 2 & 5 & 1 & 1 \\ 2 & 0 & 2 & 1 \\ 2 & 2 & 1 & 2 \end{bmatrix} = \mathbf{P}$$

Cost bound: $\mathcal{O}(m^3 d^2)$

 \rightsquigarrow incorporate

- fast matrix multiplication $\mathcal{O}(m^{\omega})$?
- fast polynomial arithmetic $\tilde{\mathcal{O}}(d)$?

Obstacle: size of the transformation

unimodular transformation **U** may have size beyond $\mathcal{O}(m^{\omega}d)$

Example:

- **A** unimodular: $\mathbf{A}^{-1}\mathbf{A} = \mathbf{I}_m$
- $\mathbf{P} = \mathbf{I}_m$ for any **s**
- $\mathbf{U} = \mathbf{A}^{-1}$

Fast Popov form

Step 1: fast row reduction $\widetilde{\mathcal{O}}(m^{\omega}d)$ [Giorgi et al., 2003], probabilistic [Gupta et al., 2012], deterministic Step 2: fast column normalization $\widetilde{\mathcal{O}}(m^{\omega}d)$ [Sarkar-Storjohann, 2011]

[Giorgi et al., 2003]:

- Expansion of \mathbf{A}^{-1} is ultimately linearly recurrent
- Find 2d + 1 high-degree terms **B** in expansion of A^{-1}
- Reconstruct **R** as $\mathbf{B} = \frac{*}{\mathbf{R}} \mod X^{2d+1}$

→ uses deg(**R**) $\leq d$, which does not hold for arbitrary shifts (even deg(**P**) may be *md*)

Obstacle: size of a shifted row reduced form

Shifted Popov form via

 $\textbf{A} \xrightarrow{\quad \text{Step 1: shifted row reduction}} \textbf{R} \xrightarrow{\quad \text{Step 2: column normalization}} \textbf{P}$

Obstacle: worst-case $deg(\mathbf{R}) = \Theta(d + amp(\mathbf{s}))$ with $amp(\mathbf{s}) = max(\mathbf{s}) - min(\mathbf{s})$

Example: A unimodular, shift s = (0, ..., 0, md, ..., md) \rightsquigarrow s-row reduced form of A

$$\mathbf{R} = \begin{bmatrix} 0 & & & & \\ & 0 & & & \\ & md & md & md & 0 & \\ md & md & md & 0 & \\ md & md & md & 0 & \\ \end{bmatrix}$$

size $\Theta(m^3d)$ beyond target cost

Hermite form in $\widetilde{\mathcal{O}}(m^{\omega}d)$

[Gupta-Storjohann, 2011], [Gupta, 2011]:

Step 1: Smith form computation: **UAV** = **S** (probabilistic) → modular equations describing RowSpace(**A**)

Step 2: find pivot degrees $\boldsymbol{\delta} = (\delta_1, \dots, \delta_m)$ by triangularization from a matrix involving **V** and **S**

Step 3: use δ to find Hermite basis of solutions to the equations

[Zhou, 2012], [Zhou-Labahn, 2016]:

Step 1: find pivot degrees δ by (partial) triangularization (using kernel bases and column bases, deterministic)

Step 2: use δ to find Hermite form of **A**

s-Popov form not triangular for arbitrary s

Vincent Neiger (ENS de Lyon)

Reduction to linear modular equations: example

$$\mathbf{I}_{m} \begin{bmatrix} M & & & \\ -L & 1 & & \\ -L^{2} & 1 & & \\ \vdots & & \ddots & \\ -L^{m-1} & & & 1 \end{bmatrix} \begin{bmatrix} 1 & & & & \\ L & 1 & & & \\ \frac{L^{2}}{2} & 1 & & \\ \vdots & & \ddots & \\ L^{m-1} & & & & 1 \end{bmatrix} = \begin{bmatrix} M & & & & \\ 1 & & & \\ & & 1 & & \\ & & & \ddots & \\ & & & & & 1 \end{bmatrix}$$

$$\Rightarrow \text{ for } \mathbf{p} = \begin{bmatrix} p_1 & \cdots & p_m \end{bmatrix},$$

$$\mathbf{p} \in \operatorname{RowSpace}(\mathbf{A}) \iff \begin{bmatrix} p_1 & \cdots & p_m \end{bmatrix} \begin{bmatrix} 1 \\ L \\ L^2 \\ \vdots \\ L^{m-1} \end{bmatrix} = 0 \mod M$$

$$\Leftrightarrow \quad p_1 1 + p_2 L + \cdots + p_m L^{m-1} = 0 \mod N$$

Reduction to system of modular equations

Smith form of A:

$$\mathsf{UAV} = \operatorname{diag}(1, \ldots, 1, \mathfrak{m}_1, \ldots, \mathfrak{m}_n)$$

Consider $\mathfrak{M} = (\mathfrak{m}_1, \dots, \mathfrak{m}_n)$ and $[\mathbf{0} | \mathbf{F}] = \mathbf{V} \mod (1, \dots, 1, \mathfrak{M})$

 $\rightsquigarrow (\mathfrak{M}, \mathbf{F})$ computed in probabilistic $\widetilde{\mathcal{O}}(m^{\omega}d)$ [Gupta-Storjohann, 2011]

Then

RowSpace(**A**) = {**p** ∈ $\mathbb{K}[X]^{1 \times m}$ | **pF** = 0 mod \mathfrak{M} } \rightsquigarrow **s**-Popov form of **A** = **s**-Popov basis of solutions for (\mathfrak{M}, \mathbf{F})

Linear systems of modular equations

Output: **P** the **s**-Popov solution basis for $(\mathfrak{M}, \mathbf{F})$

Order bases: $\mathfrak{m}_1 = \cdots = \mathfrak{m}_n = X^{\sigma/n} \quad \rightsquigarrow \quad \widetilde{\mathcal{O}}(m^{\omega-1}\sigma)$ [Giorgi et al., 2003] [Storjohann, 2006] [Zhou-Labahn, 2012] [Jeannerod et al., 2016]

Interpolation bases: $\mathfrak{m}_j = \text{product of known linear factors} \quad \rightsquigarrow \quad \widetilde{\mathcal{O}}(m^{\omega-1}\sigma)$ [Beckermann-Labahn, 2000] [Jeannerod et al., 2015+2016]

Here: $\widetilde{\mathcal{O}}(m^{\omega-1}\sigma)$ for arbitrary moduli, $n \in \mathcal{O}(m)$

Vincent Neiger (ENS de Lyon)

Overview of the algorithm

Similarly to [Jeannerod et al., 2016] for interpolation bases, divide-and-conquer on n (number of equations):

- recursive calls give $P^{(1)}$ and $P^{(2)} \rightsquigarrow P = \text{ColumnNormalize}(P^{(2)}P^{(1)})$
- deduce s-pivot degrees δ of P
- compute P when knowing δ [Gupta-Storjohann, 2011]

\rightsquigarrow base case: one equation

Difficulty: no recurrence relations like in order/interpolation bases ~ compute a shifted Popov kernel basis with arbitrary shift:

$$\mathbf{pF} = 0 \mod \mathfrak{m} \quad \Leftrightarrow \quad \text{for some } q, \quad [\mathbf{p} \quad q] \begin{bmatrix} \mathbf{F} \\ \mathfrak{m} \end{bmatrix} = 0$$

New divide-and-conquer approach on the shift

Vincent Neiger (ENS de Lyon)

New divide-and-conquer approach on the shift

Recall $\deg(\mathbf{F}) < \deg(\mathfrak{m}) = \sigma$

Reduction to kernel basis:

$$\begin{bmatrix} \mathbf{P} & \mathbf{q} \end{bmatrix} = (\mathbf{s}, \min(\mathbf{s})) \text{-Popov kernel basis of } \begin{bmatrix} \mathbf{F} \\ \mathbf{m} \end{bmatrix}$$

Reduction to order basis:

$$\begin{bmatrix} \mathbf{P} & \mathbf{q} \\ * & * \end{bmatrix} = (\mathbf{s}, \min(\mathbf{s})) \text{-Popov order basis for } \begin{bmatrix} \mathbf{F} \\ \mathfrak{m} \end{bmatrix} \text{ and } \operatorname{amp}(\mathbf{s}) + 2\sigma$$

→ Base case: $\operatorname{amp}(\mathbf{s}) \in \mathcal{O}(\sigma)$, cost $\widetilde{\mathcal{O}}(m^{\omega-1}\sigma)$ [Jeannerod et al., 2016] Divide-and-conquer on $\operatorname{amp}(\mathbf{s})$:

$$\mathbf{s} = (\mathbf{s}^{(1)}, \mathbf{s}^{(2)}), \quad \mathbf{F} = \begin{bmatrix} \mathbf{F}^{(1)} \\ \mathbf{F}^{(2)} \end{bmatrix} \text{ with } \operatorname{amp}(\mathbf{s}^{(i)}) \approx \operatorname{amp}(\mathbf{s})/2$$

New divide-and-conquer approach on the shift

• recursive call to find splitting index and $\delta^{(1)}$:

$$\begin{bmatrix} \mathbf{P}^{(1)} & \mathbf{0} \\ * & * \end{bmatrix} = \mathbf{s}^{(1)} \text{-} \mathsf{Popov sol. basis for } (\mathbf{F}^{(1)}, \mathfrak{m}) \quad \rightsquigarrow \quad \mathsf{UpdateSplit}(\mathbf{s}, \mathbf{F})$$

2 residual computation thanks to known $\delta^{(1)}$:

$$\mathbf{A} = \begin{bmatrix} \mathbf{P}^{(1)} & \mathbf{0} & \mathbf{q}^{(1)} \\ * & \mathbf{P}^{(0)} & * \\ * & \mathbf{0} & q \end{bmatrix} = \mathbf{u} \text{-order basis for } \begin{bmatrix} \mathbf{F}^{(1)} \\ \mathbf{F}^{(2)} \\ \mathbf{m} \end{bmatrix} \quad \rightsquigarrow \quad \begin{bmatrix} \mathbf{0} \\ \mathbf{G} \\ \mathbf{n} \end{bmatrix} = \mathbf{A} \begin{bmatrix} \mathbf{F}^{(1)} \\ \mathbf{F}^{(2)} \\ \mathbf{m} \end{bmatrix}$$

③ recursive call to find $\delta^{(2)} \rightsquigarrow \mathbf{s}$ -pivot degree $\delta = (\delta^{(1)}, \delta^{(0)} + \delta^{(2)})$

$$\mathsf{P}^{(2)} = (\mathsf{s}^{(2)} + \delta^{(0)})$$
-Popov sol. basis for $(\mathsf{G},\mathfrak{n})$

Outpute P from δ **via order basis at order** $\mathcal{O}(\sigma)$

Conclusion

Linear systems of modular equations

- $\widetilde{\mathcal{O}}(m^{\omega-1}\sigma)$
- return basis of solutions
- in s-Popov form
- deterministic

Shifted row reduction of polynomial matrices

- $\widetilde{\mathcal{O}}(m^{\omega-1}\sigma(\mathbf{A}))$
- return s-Popov form
- probabilistic

Example: constrained bivariate interpolation

As in Guruswami-Sudan list-decoding of Reed-Solomon codes:

$$\mathcal{M} = \left\{ Q = \sum_{0 \leqslant j < m} Q_j(X) Y^j \in \mathbb{K}[X, Y] \mid Q(x_i, y_i) = 0 \text{ for } 1 \leqslant i \leqslant \sigma \right\}$$

Define $M = (X - x_1) \cdots (X - x_{\sigma})$ and $L \in \mathbb{K}[X]$ s.t. $L(x_i) = y_i$

Example: constrained bivariate interpolation

As in Guruswami-Sudan list-decoding of Reed-Solomon codes:

$$\mathcal{M} = \left\{ Q = \sum_{0 \leqslant j < m} Q_j(X) Y^j \in \mathbb{K}[X, Y] \mid Q(x_i, y_i) = 0 \text{ for } 1 \leqslant i \leqslant \sigma \right\}$$

Define $M = (X - x_1) \cdots (X - x_{\sigma})$ and $L \in \mathbb{K}[X]$ s.t. $L(x_i) = y_i$

$$\rightsquigarrow \text{ basis of } \mathcal{M}: \left(\begin{array}{c} M \\ Y-L \\ Y^2-L^2 \\ \vdots \\ Y^{m-1}-L^{m-1} \end{array} \right) \iff \mathbf{A} = \begin{bmatrix} M & & & \\ -L & 1 & & \\ -L^2 & 1 & & \\ \vdots & & \ddots \\ -L^{m-1} & & & 1 \end{bmatrix}$$

Problem: find $Q \in \mathcal{M}$ satisfying deg $(Q_j) < N_j$ for $0 \leq j < m$ Approach:

- compute the Popov form P of A with degree weights on the columns
- return row of P which satisfies (iii)

Reduction to linear modular equations: example

$$\mathbf{I}_{m} \begin{bmatrix} M & & & & \\ -L & 1 & & & \\ -L^{2} & 1 & & \\ \vdots & & \ddots & \\ -L^{m-1} & & & 1 \end{bmatrix} \begin{bmatrix} 1 & & & & \\ L & 1 & & \\ \vdots & & \ddots & \\ L^{m-1} & & & 1 \end{bmatrix} = \begin{bmatrix} M & & & & \\ 1 & & & \\ & 1 & & \\ & & 1 & \\ & & \ddots & \\ & & & 1 \end{bmatrix}$$

In other words, for $Q = \sum_{j < m} Q_j(X) Y^j$,

$$Q(x_i, y_i) = 0 \text{ for all } i \iff \begin{bmatrix} Q_0 & \cdots & Q_{m-1} \end{bmatrix} \begin{bmatrix} 1 \\ L \\ L^2 \\ \vdots \\ L^{m-1} \end{bmatrix} = 0 \mod M$$
$$\Leftrightarrow \quad Q(X, L) = 0 \mod M$$

Previous algorithms

Here, $\star =$ probabilistic algorithm, $d = deg(\mathbf{A})$

Algorithm	Problem	Cost bound	
[Hafner-McCurley, 1991]	Hermite form	$\widetilde{\mathcal{O}}(m^4d)$	
[Storjohann-Labahn, 1996]	Hermite form	$\widetilde{\mathcal{O}}(m^{\omega+1}d)$	
[Villard, 1996]	Popov & Hermite forms	$\widetilde{\mathcal{O}}(m^{\omega+1}d+(md)^{\omega})$	
[Alekhnovich, 2002]	weak Popov form	$\widetilde{\mathcal{O}}(m^{\omega+1}d)$	
[Mulders-Storjohann, 2003]	Popov & Hermite forms	$\mathcal{O}(m^3d^2)$	
[Giorgi et al., 2003]	0 -reduction	$\widetilde{\mathcal{O}}(m^\omega d)$	*
[1] = [Sarkar-Storjohann, 2011]	Popov form of 0 -reduced	$\widetilde{\mathcal{O}}(m^\omega d)$	
[Gupta-Storjohann, 2011]	Hermite form	$\widetilde{\mathcal{O}}(m^\omega d)$	*
[2] = [Gupta et al., 2012]	0 -reduction	$\widetilde{\mathcal{O}}(m^\omega d)$	
[Zhou-Labahn, 2012/2016]	Hermite form	$\widetilde{\mathcal{O}}(m^\omega d)$	
[1] + [2]	${\bf s}\text{-}Popov$ form for any ${\bf s}$	$\widetilde{\mathcal{O}}(m^{\omega}(d + \operatorname{amp}(\mathbf{s})))$	

[Wolovich, 1974] and [Mulders-Storjohann, 2003] Row reduction:

$$\mathbf{A} = \begin{bmatrix} 3 & 2 & 0 & 0 \\ 4 & 5 & 0 & 0 \\ 2 & 0 & 2 & 1 \\ 3 & 2 & 3 & 2 \end{bmatrix} \longrightarrow \begin{bmatrix} 3 & 2 & 0 & 0 \\ 4 & 5 & 0 & 0 \\ 2 & 0 & 2 & 1 \\ 3 & 2 & 2 & 2 \end{bmatrix}$$

Column normalization:

Cost bound: $\mathcal{O}(m^3 d^2)$

[Wolovich, 1974] and [Mulders-Storjohann, 2003] Row reduction:

$$\mathbf{A} = \begin{bmatrix} 3 & 2 & 0 & 0 \\ 4 & 5 & 0 & 0 \\ 2 & 0 & 2 & 1 \\ 3 & 2 & 3 & 2 \end{bmatrix} \longrightarrow \begin{bmatrix} 3 & 2 & 0 & 0 \\ 4 & 5 & 0 & 0 \\ 2 & 0 & 2 & 1 \\ 3 & 2 & 2 & 2 \end{bmatrix} \longrightarrow \begin{bmatrix} 3 & 2 & 0 & 0 \\ 4 & 5 & 0 & 0 \\ 2 & 0 & 2 & 1 \\ 2 & 2 & 2 & 2 \end{bmatrix} = \mathbf{R}$$

Column normalization:

Cost bound: $\mathcal{O}(m^3 d^2)$

[Wolovich, 1974] and [Mulders-Storjohann, 2003] Row reduction:

$$\mathbf{A} = \begin{bmatrix} 3 & 2 & 0 & 0 \\ 4 & 5 & 0 & 0 \\ 2 & 0 & 2 & 1 \\ 3 & 2 & 3 & 2 \end{bmatrix} \longrightarrow \begin{bmatrix} 3 & 2 & 0 & 0 \\ 4 & 5 & 0 & 0 \\ 2 & 0 & 2 & 1 \\ 3 & 2 & 2 & 2 \end{bmatrix} \longrightarrow \begin{bmatrix} 3 & 2 & 0 & 0 \\ 4 & 5 & 0 & 0 \\ 2 & 0 & 2 & 1 \\ 2 & 2 & 2 & 2 \end{bmatrix} = \mathbf{R}$$

Column normalization:

Cost bound: $\mathcal{O}(m^3 d^2)$

Vincent Neiger (ENS de Lyon)

[Wolovich, 1974] and [Mulders-Storjohann, 2003] Row reduction:

$$\mathbf{A} = \begin{bmatrix} 3 & 2 & 0 & 0 \\ 4 & 5 & 0 & 0 \\ 2 & 0 & 2 & 1 \\ 3 & 2 & 3 & 2 \end{bmatrix} \longrightarrow \begin{bmatrix} 3 & 2 & 0 & 0 \\ 4 & 5 & 0 & 0 \\ 2 & 0 & 2 & 1 \\ 3 & 2 & 2 & 2 \end{bmatrix} \longrightarrow \begin{bmatrix} 3 & 2 & 0 & 0 \\ 4 & 5 & 0 & 0 \\ 2 & 0 & 2 & 1 \\ 2 & 2 & 2 & 2 \end{bmatrix} = \mathbf{R}$$

Column normalization:

$$\mathbf{R} = \begin{bmatrix} 3 & 2 & 0 & 0 \\ 4 & 5 & 0 & 0 \\ 2 & 0 & 2 & 1 \\ 2 & 2 & 2 & 2 \end{bmatrix} \longrightarrow \begin{bmatrix} 3 & 2 & 0 & 0 \\ 4 & 5 & 0 & 0 \\ 2 & 0 & 2 & 1 \\ 2 & 2 & 1 & 2 \end{bmatrix}$$

Cost bound: $\mathcal{O}(m^3 d^2)$

[Wolovich, 1974] and [Mulders-Storjohann, 2003] Row reduction:

$$\mathbf{A} = \begin{bmatrix} 3 & 2 & 0 & 0 \\ 4 & 5 & 0 & 0 \\ 2 & 0 & 2 & 1 \\ 3 & 2 & 3 & 2 \end{bmatrix} \longrightarrow \begin{bmatrix} 3 & 2 & 0 & 0 \\ 4 & 5 & 0 & 0 \\ 2 & 0 & 2 & 1 \\ 3 & 2 & 2 & 2 \end{bmatrix} \longrightarrow \begin{bmatrix} 3 & 2 & 0 & 0 \\ 4 & 5 & 0 & 0 \\ 2 & 0 & 2 & 1 \\ 2 & 2 & 2 & 2 \end{bmatrix} = \mathbf{R}$$
Column normalization:
$$\mathbf{R} = \begin{bmatrix} 3 & 2 & 0 & 0 \\ 4 & 5 & 0 & 0 \\ 2 & 0 & 2 & 1 \\ 2 & 2 & 2 & 2 \end{bmatrix} \longrightarrow \begin{bmatrix} 3 & 2 & 0 & 0 \\ 4 & 5 & 0 & 0 \\ 2 & 0 & 2 & 1 \\ 2 & 2 & 1 & 2 \end{bmatrix} \longrightarrow \begin{bmatrix} 3 & 2 & 0 & 0 \\ 4 & 5 & 0 & 0 \\ 2 & 0 & 2 & 1 \\ 2 & 2 & 1 & 2 \end{bmatrix} \longrightarrow \begin{bmatrix} 3 & 2 & 0 & 0 \\ 2 & 5 & 1 & 1 \\ 2 & 0 & 2 & 1 \\ 2 & 2 & 1 & 2 \end{bmatrix} = \mathbf{P}$$

Cost bound: $\mathcal{O}(m^3 d^2)$

[Wolovich, 1974] and [Mulders-Storjohann, 2003] Row reduction:

$$\mathbf{A} = \begin{bmatrix} 3 & 2 & 0 & 0 \\ 4 & 5 & 0 & 0 \\ 2 & 0 & 2 & 1 \\ 3 & 2 & 3 & 2 \end{bmatrix} \longrightarrow \begin{bmatrix} 3 & 2 & 0 & 0 \\ 4 & 5 & 0 & 0 \\ 2 & 0 & 2 & 1 \\ 3 & 2 & 2 & 2 \end{bmatrix} \longrightarrow \begin{bmatrix} 3 & 2 & 0 & 0 \\ 4 & 5 & 0 & 0 \\ 2 & 0 & 2 & 1 \\ 2 & 2 & 2 & 2 \end{bmatrix} = \mathbf{R}$$
umm normalization:

$$\mathbf{R} = \begin{bmatrix} 3 & 2 & 0 & 0 \\ 4 & 5 & 0 & 0 \\ 2 & 0 & 2 & 1 \\ 2 & 2 & 2 & 2 \end{bmatrix} \longrightarrow \begin{bmatrix} 3 & 2 & 0 & 0 \\ 4 & 5 & 0 & 0 \\ 2 & 0 & 2 & 1 \\ 2 & 2 & 1 & 2 \end{bmatrix} \longrightarrow \begin{bmatrix} 3 & 2 & 0 & 0 \\ 2 & 5 & 1 & 1 \\ 2 & 0 & 2 & 1 \\ 2 & 2 & 1 & 2 \end{bmatrix} = \mathbf{P}$$

Cost bound: $\mathcal{O}(m^3 d^2)$

 \rightsquigarrow incorporate

Col

- fast matrix multiplication $\mathcal{O}(m^{\omega})$?
- fast polynomial arithmetic $\tilde{\mathcal{O}}(d)$?