Big integer multiplication

Svyatoslav Covanov Supervisors: Jérémie Detrey and Emmanuel Thomé

Team CARAMBA

June 29, 2016

- Fast Fourier Transform
- 2 Fürer
- Using generalized Fermat primes

- Fast Fourier Transform
- 2 Fürer
- Using generalized Fermat primes

Naive multiplication

How to multiply two N-bit integers a and b?

Naive multiplication

How to multiply two N-bit integers a and b?

Schoolbook multiplication: $O(N^2)$ bit complexity.

Karatsuba:

- $O(N^{\log_2 3})$ bit complexity.
- Transformation of integers into polynomials.

Multiplying integer using polynomials

Input: 2 numbers a and b of N bits.

Output: 2 polynomials $A = \sum_i a_i x^i$ and $B = \sum_i b_i x^i$ of degree n-1.

$$a = a_0 + 2^k \times a_1 + \dots + a_{n-1} \times 2^{(n-1)k} = A(2^k)$$

$$b = b_0 + 2^k \times b_1 + \dots + b_{n-1} \times 2^{(n-1)k} = B(2^k)$$

Multiplying integer using polynomials

Input: 2 numbers a and b of N bits.

Output: 2 polynomials $A = \sum_i a_i x^i$ and $B = \sum_i b_i x^i$ of degree n-1

$$a = a_0 + 2^k \times a_1 + \dots + a_{n-1} \times 2^{(n-1)k} = A(2^k)$$

$$b = b_0 + 2^k \times b_1 + \dots + b_{n-1} \times 2^{(n-1)k} = B(2^k)$$

- \bullet \mathcal{R} is a commutative ring.
- $\begin{array}{c}
 A \longrightarrow \tilde{A} \in \mathcal{R}[x] \\
 B \longrightarrow \tilde{B} \in \mathcal{R}[x]
 \end{array}$
- $C \longrightarrow \tilde{C} = \tilde{A} \cdot \tilde{B}$ is injective:

$$\forall j, |c_j| = |\sum_{i=0}^j a_i \cdot b_{j-i}| < (j+1) \cdot 2^{2k} \le n \cdot 2^{2k}.$$

- We choose 2n distinct points w_i of \mathcal{R} .
- Computation of $A(w_i)$ and $B(w_i)$: equivalent to the product

$$\begin{pmatrix} 1 & w_0 & \dots & w_0^{2\,n-1} \\ 1 & w_1 & \dots & w_1^{2\,n-1} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & w_{2\,n-1} & \dots & w_{2\,n-1}^{2\,n-1} \end{pmatrix} \cdot \begin{pmatrix} a_0 \\ \vdots \\ a_{n-1} \\ 0 \\ \vdots \\ 0 \end{pmatrix} = \begin{pmatrix} A(w_0) \\ \vdots \\ A(w_i) \\ \vdots \\ A(w_{2n-1}) \end{pmatrix}.$$

- Pointwise products $A(w_i) \cdot B(w_i) = C(w_i)$.
- Lagrange interpolation of C from the 2n points $A(w_i) \cdot B(w_i)$:

$$\begin{pmatrix} 1 & w_0 & \dots & w_0^{2n-1} \\ 1 & w_1 & \dots & w_1^{2n-1} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & w_{2n-1} & \dots & w_{2n-1}^{2n-1} \end{pmatrix}^{-1} \cdot \begin{pmatrix} A(w_0)B(w_0) \\ \vdots \\ A(w_{2n-1})B(w_{2n-1}) \end{pmatrix}.$$

Discrete Fourier Transform (DFT)

If $\mathcal R$ is a ring containing a 2n-th principal root of unity ω : let

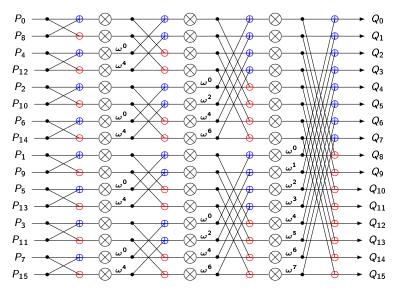
$$M_{2n}(\omega) = egin{pmatrix} 1 & 1 & \dots & 1 \ 1 & \omega & \dots & \omega^{2n-1} \ \vdots & \vdots & \ddots & \vdots \ 1 & \omega^{2n-1} & \dots & (\omega^{2n-1})^{2n-1} \end{pmatrix}.$$

The root ω is said to be a 2n-th principal root of unity if

$$\forall i \in [1, 2n-1], \sum_{j=0}^{2n-1} \omega^{ij} = 0.$$

$FFT(A, \omega, 2n)$

$$\begin{array}{l} \text{if } n=2 \text{ then} \\ \text{return } A_0+A_1+X(A_0-A_1) \\ \text{end if} \\ A_{even} \leftarrow (A_{2i})_i \\ A_{odd} \leftarrow (A_{2i+1})_i \\ \hat{A}_{even} \leftarrow \text{FFT}(A_{even},\ \omega^2,\ n) \\ \hat{A}_{odd} \leftarrow \text{FFT}(A_{odd},\ \omega^2,\ n) \\ \hat{A} \leftarrow \hat{A}_{odd} \leftarrow \text{FFT}(A_{odd},\ \omega^2,\ n) \\ \hat{A} \leftarrow \hat{A}_{odd}(X)+\hat{A}_{even}(\omega X)+X^n\cdot(\hat{A}_{odd}(X)-\hat{A}_{even}(\omega X)) \\ \text{return } \hat{A} \end{array}$$



 \Rightarrow 2n = 16 points, $\log(2n) = 4$ levels, $n(\log(2n) - 1) = 24$ multiplications.

Choice of the ring

- N: # bits of the integers that we multiply
- ② n-1: degree of the polynomials A and B used to represent a and b
- **1 b** k: # bits used to encode the coefficients of A and B: $a = A(2^k)$, $b = B(2^k)$ and $n \cdot k = N$.

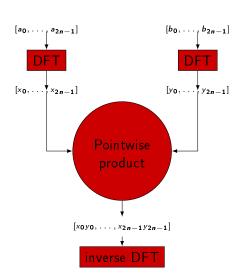
Choice of the ring

- N: # bits of the integers that we multiply
- 2 n-1: degree of the polynomials A and B used to represent a and b
- **1 k**: # bits used to encode the coefficients of A and B: $a = A(2^k)$, $b = B(2^k)$ and $n \cdot k = N$.

Examples: (Schönhage-Strassen algorithms)

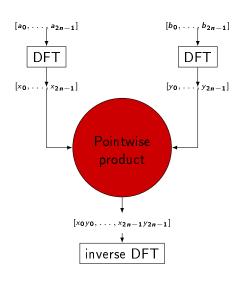
- $\mathcal{R} = \mathbb{C}$: $\omega = \exp(i\pi/n)$, provided that we allow enough precision.
- $\mathcal{R}=\mathbb{Z}/(2^e+1)\mathbb{Z}$: $\omega=2^j$ is a 2e/j-th principal root of unity.

Complex Case



- O(n log n) expensive multiplications during the FFT
- 2n expensive multiplications during the pointwise product

Modular Case



- O(n log n) trivial multiplications during the FFT
- 2n expensive multiplications during the pointwise product

Some remarks

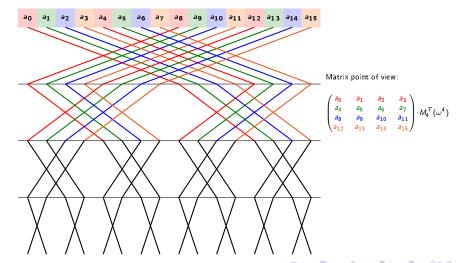
Case	Degree	Mult. by a root	Recursion	Complexity
C	$O(N/\log N)$	expensive	O(log N)	$N \log N \log \log N \cdots 2^{O(\log^* N)}$
$\mathbb{Z}/(2^e+1)\mathbb{Z}$	$O(\sqrt{N})$	cheap	$O(\sqrt{N})$	N log N log log N

In \mathbb{C} , computing an FFT in $\{1,-1,i,-i\}$ is quite easy. But less obvious for superior orders...

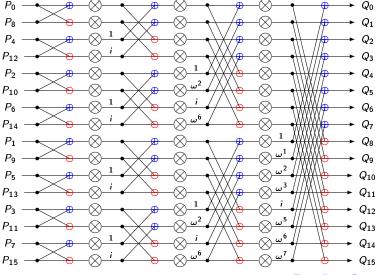
- Fast Fourier Transform
- 2 Fürer
- Using generalized Fermat primes

Radix-4 Cooley-Tukey

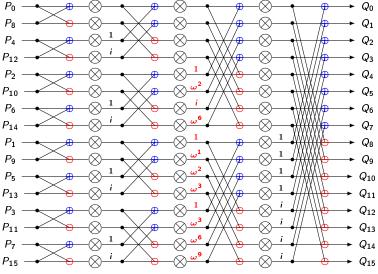
4 · DFT(4):



An example in Complex Field: radix-2 FFT



An example in Complex Field: radix-4 FFT



Fürer's algorithm

$$\mathsf{DFT}(2P \cdot (n/P)) = 2P \cdot \mathsf{DFT}(n/P) + \mathsf{Twiddle\ factors} + (n/P) \cdot \mathsf{DFT}(2P).$$

 \Rightarrow There exists a 2n-th root of unity ρ such that $\rho^{n/P} = x$.

• \mathcal{R} is the ring $\mathcal{R} = \mathbb{C}[x]/(x^P+1)$ (P divides n).

- Computation of 2n-point DFT with radix-2P FFT ($2P \approx \log N$).
- $\log_{2P} 2n$ levels of recursion:

$$\underbrace{\log_{2P}(2n)}_{\text{nb. of levels}} \cdot \underbrace{2n}_{\text{mult. per level}} \cdot \underbrace{\mathcal{M}_{\mathcal{R}}}_{\text{cost of a mult. in } \mathcal{R}}$$

expensive multiplications.

Case	Degree	Mult. by a root	Recursion	Complexity
\mathbb{C}	$O(N/\log N)$	expensive	$O(\log N)$	$N \log N \log \log N \cdots 2^{O(\log^* N)}$
$\mathbb{Z}/(2^e+1)\mathbb{Z}$	$O(\sqrt{N})$	cheap	$O(\sqrt{N})$	N log N log log N
$\mathbb{C}[x]/(x^P+1)$	$O(N/\log^2 N)$	it depends	$O(\log^2 N)$	N log N 2 ^{O(log* N)}

In 2014, Harvey, Lecerf and Van Der Hœven proved that the exact complexity is

 $N \log N 16^{\log^* N}$.

With Bluestein's Chirp transform, they reach unconditionally $N \log N 8^{\log^* N}$.

By using a conjecture on Mersenne primes, they even have $N \log N \, 4^{\log^* N}$.

- Fast Fourier Transform
- 2 Fürer
- Using generalized Fermat primes

Number-theoretic transform

- N: # bits of the integers that we multiply
- 2 n-1: degree of the polynomials A and B used to represent a and b
- 3 k: # bits used to encode the coefficients of A and B: $a = A(2^k)$ and $b = B(2^k)$

Instead of computing FFT over \mathbb{C} , we can choose $\mathcal{R}=\mathbb{Z}/q\mathbb{Z}$. The prime q must satisy $2n\mid q-1$ (there exists a 2n-th principal root of unity).

A choice of q such that $\log q = O(\log N)$ is optimal.

A Fürer-like number theoretic transform

- q is chosen such that $q = r^P + 1$: this is a generalized Fermat prime.
 - Conjecturally, there exists r such that $r < P \cdot (\log P)^2 \Rightarrow \log_2 q \approx P \log P$.
- There exists ρ a 2n-th root of unity in $\mathbb{Z}/q\mathbb{Z}$ such that $\rho^{n/P}=r$.

A Fürer-like number theoretic transform

- q is chosen such that $q = r^P + 1$: this is a generalized Fermat prime.
 - Conjecturally, there exists r such that $r < P \cdot (\log P)^2 \Rightarrow \log_2 q \approx P \log P$.
- There exists ρ a 2n-th root of unity in $\mathbb{Z}/q\mathbb{Z}$ such that $\rho^{n/P}=r$.
- $x \in \mathbb{Z}/q\mathbb{Z}$ and $y \in \mathbb{Z}/q\mathbb{Z}$ are represented by polynomials over \mathbb{Z} :

$$X(r) = x_0 + x_1 \cdot r + x_2 \cdot r^2 \cdots x_{P-1} \cdot r^{P-1}$$

and

$$Y(r) = y_0 + y_1 \cdot r + y_2 \cdot r^2 \cdots y_{P-1} \cdot r^{P-1}.$$

- Computation of $x \cdot y$: we choose $Q = O(\log \log P)$ and we represent x and y in radix r^Q .
 - \Rightarrow We get \tilde{X} and \tilde{Y} polynomials modulo $X^{P/Q}+1$ with coefficients $\leq r^Q$.
 - \Rightarrow We compute a P/Q-points FFT.

Some estimations

	Schönhage-Strassen algorithm			
bitsize	nb. mult.	mult. bitsize	estimated time (s)	
2 ³⁰	2 ¹⁶	$\approx 2^{16}$	9.96	
2 ³⁶	2 ¹⁸	$\approx 2^{18}$	$2.60 \cdot 10^{2}$	
2 ⁴⁰	2 ²¹	$\approx 2^{21}$	2.36 · 10 ⁴	
2 ⁴⁶	2 ²⁴	$\approx 2^{24}$	$2.17 \cdot 10^{6}$	
2 ⁵⁰	2 ²⁶	$\approx 2^{26}$	4.10 · 10 ⁷	
2 ⁵⁶	2 ²⁹	$\approx 2^{29}$	2.94 · 10 ⁹	

	Generalized Fermat primes				
bitsize	nb. mult.		KS. bitsize	estimated time (s)	
2 ³⁰	2 ²⁴ · 13	$562^{32} + 1$	800	3.57 · 10	
2 ³⁶	$2^{30} \cdot 16$	$562^{32} + 1$	800	$3.35 \cdot 10^{3}$	
2 ⁴⁰	2 ³⁴ · 19	$562^{32} + 1$	800	6.26 · 10 ⁴	
2 ⁴⁶	2 ⁴⁰ · 22	$884^{32} + 1$	800	4.64 · 10 ⁶	
2 ⁵⁰	2 ⁴⁴ · 25	$884^{32} + 1$	800	$7.91 \cdot 10^{7}$	
2 ⁵⁶	2 ⁵⁰ · 28	$884^{32} + 1$	800	5.67 · 10 ⁹	

• nb. mult.: $2n \cdot (3 \cdot \lceil \log_{2P} 2n \rceil + 1)$.

Conclusion

Avoiding the padding due to a modular ring and the Kronecker substitution improves on the complexity of the algorithm: we reach $N \log N \cdot 4^{\log^* N}$.

The complexity is conjectural: related to "Hypothesis H" and lower bounds on r such that P(r) is prime for a polynomial P.

In practice, we do not expect this algorithm to improve on Schönhage-Strassen for sizes $\leq 2^{40}$ bits.

It is possible to improve the arithmetic in $\mathbb{Z}/q\mathbb{Z}$ by choosing $q=b^P+1$ with a special b (sparse?): a lot of generalized Fermat primes.