Formally Verified Approximations of Definite Integrals

Assia Mahboubi Guillaume Melquiond
Thomas Sibut-Pinote

Inria & LRI, Université Paris Sud, CNRS

2016-06-29

Numerical Integrals in Modern Math Proofs

Double bubbles minimize

The proof parameterizes the space of possible solutions by a two-dimensional rectangle [...]. This rectangle is subdivided into 15,016 smaller rectangles which are investigated by calculations involving a total of 51,256 numerical integrals.

Numerical Integrals in Modern Math Proofs

Double bubbles minimize

The proof parameterizes the space of possible solutions by a two-dimensional rectangle [...]. This rectangle is subdivided into 15,016 smaller rectangles which are investigated by calculations involving a total of 51,256 numerical integrals.

Major arcs for Goldbach's problem

$$\int_{-\infty}^{\infty} \frac{(0.5 \cdot \log(\tau^2 + 2.25) + 4.1396 + \log \pi)^2}{0.25 + \tau^2} d\tau$$

We compute the last integral numerically (from -100,000 to 100,000).

Tags

Users

Badges

Rigorous numerical integration

I need to evaluate some (one-variable) integrals that neither SAGE nor Mathematica can do symbolically. As far as I can tell, I have two options:

(a) Use GSL (via SAGE), Maxima or Mathematica to do numerical integration. This is really a non-option, since, if I understand correctly, the "error bound" they give is not really a guarantee.

(b) Cobble together my own programs using the trapezoidal rule, Simpson's rule, etc., and get rigorous error bounds using bounds I have for the second (or fourth, or what have you) derivative of the function I am integrating. This is what I have been doing.

Is there a third option? Is there standard software that does (b) for me?

na.numerical-analysis

share cite improve this question

asked Mar 5 '13 at 23:03

H A Helfgott

3,141 • 17 • 61

Introduction Enclosures Examples Conclusion Motivation Objectives Coq CoqInterval

Introduction

Objective

A tool for computing guaranteed bounds on definite integrals.

Introduction

Objective

A tool for computing guaranteed bounds on definite integrals.

Methodology

- define a robust yet efficient algorithm,
- formally prove that it is correct,
- execute it inside the Coq formal system.

Introduction

Objective

A tool for computing guaranteed bounds on definite integrals.

Methodology

- define a robust yet efficient algorithm,
- formally prove that it is correct,
- execute it inside the Cog formal system.

Bonus objective

A tool for proving that a function is integrable on a domain.

Outline

- Introduction
- 2 Numerical enclosures of integrals
- 3 Examples
- 4 Conclusion

Outline

- Introduction
 - Numerical integrals in modern math proofs
 - Objectives
 - The Cog proof assistant
 - The CogInterval library
- Numerical enclosures of integrals
- Examples
- Conclusion

Coq: a Proof Assistant

Support

- typed lambda-calculus with inductive types,
- proof verification using a "small" kernel,
- proof assistance using tactic-based backward reasoning.

Cog: a Proof Assistant

Support

- typed lambda-calculus with inductive types,
- proof verification using a "small" kernel,
- proof assistance using tactic-based backward reasoning.

```
Stating and proving \frac{ab}{ab} = \frac{b}{a}
Lemma Rdiv_compat_r : (* stating the theorem *)
  forall a b c : R,
  a \leftrightarrow 0 \rightarrow c \leftrightarrow 0 \rightarrow (a*b) / (a*c) = b/c.
Proof. (* building the proof using tactics *)
  intros.
  field.
  easy.
Qed. (* verifying the resulting proof *)
```

Automatic Proof using CoqInterval

Support

Quantifier-free formulas of enclosures of expressions using

- basic arithmetic operators: $+, -, \times, \div, \sqrt{\cdot}$
- elementary functions: cos, sin, tan, arctan, exp, log.

Automatic Proof using CogInterval

Support

Quantifier-free formulas of enclosures of expressions using

- basic arithmetic operators: $+, -, \times, \div, \sqrt{\cdot}$,
- elementary functions: cos, sin, tan, arctan, exp, log.

Approach

Fully formalized in Coq:

- efficient multi-precision FP arithmetic,
- interval arithmetic with univariate Taylor models,
- reflexive tactic.

Automatic Proof using CoqInterval

```
Stating and proving x \le 3 \Rightarrow \sqrt{\exp x} <= 5

Lemma whatever:
forall x: R, x <= 3 -> sqrt (exp x) <= 5.

Proof.
intros.
interval.
Qed.
```

Outline

- Introduction
- 2 Numerical enclosures of integrals
 - Interval arithmetic
 - Naive integral enclosure
 - Polynomial integral enclosure
 - Adaptive splitting
 - Integrability
- 3 Examples
- 4 Conclusion

Interval Arithmetic

Definition (Interval)

An interval $\mathbf{x} \in \mathbb{I}$ is a closed subset of \mathbb{R} .

It is represented by floating-point bounds $[\underline{x}, \overline{x}]$

with $\underline{x} \in \mathbb{F} \cup \{-\infty\}$ and $\overline{x} \in \mathbb{F} \cup \{+\infty\}$.

Interval Arithmetic

Definition (Interval)

An interval $\mathbf{x} \in \mathbb{I}$ is a closed subset of \mathbb{R} .

It is represented by floating-point bounds $[\underline{x}, \overline{x}]$ with $\underline{x} \in \mathbb{F} \cup \{-\infty\}$ and $\overline{x} \in \mathbb{F} \cup \{+\infty\}$.

Definition (Interval extension)

For any function $f: \mathbb{R}^n \to \mathbb{R}$,

a function $F: \mathbb{I}^n \to \mathbb{I}$ is an *interval extension* of f on \mathbb{R} if

$$\forall \mathbf{x}_1, \dots, \mathbf{x}_n, \{f(x_1, \dots, x_n) \mid \forall i, x_i \in \mathbf{x}_i\} \subseteq \mathbf{f}(\mathbf{x}_1, \dots, \mathbf{x}_n).$$

Interval Arithmetic

Good points

Interval extensions can be computed cheaply by composition of simple operators:

•
$$[\underline{u}, \overline{u}] + [\underline{v}, \overline{v}] = [\nabla(\underline{u} + \underline{v}), \triangle(\overline{u} + \overline{v})]$$

•
$$[\underline{u}, \overline{u}] - [\underline{v}, \overline{v}] = [\nabla (\underline{u} - \overline{v}), \triangle (\overline{u} - \underline{v})]$$

Good points

Interval extensions can be computed cheaply by composition of simple operators:

- $[\underline{u}, \overline{u}] + [\underline{v}, \overline{v}] = [\nabla(\underline{u} + \underline{v}), \triangle(\overline{u} + \overline{v})]$
- $[\underline{u}, \overline{u}] [\underline{v}, \overline{v}] = [\nabla (\underline{u} \overline{v}), \triangle (\overline{u} \underline{v})]$

Bad points

When created that way, interval extensions compute overestimated enclosures if there are multiple occurrences of variables:

for
$$x \in [-1, 1]$$
, $\sin x - x \in [-0.2; 0.2]$, but $\sin x - x \subset [-1.9; 1.9]$.

Lemma (Naive integral enclosure)

For any intervals \mathbf{u}, \mathbf{v} such that $u \in \mathbf{u}$ and $v \in \mathbf{v}$, we have

$$\int_{u}^{v} f(t) dt \in (\mathbf{v} - \mathbf{u}) \cdot \mathbf{f}(\mathbf{u} \cup \mathbf{v}).$$

Lemma (Naive integral enclosure)

For any intervals \mathbf{u}, \mathbf{v} such that $u \in \mathbf{u}$ and $v \in \mathbf{v}$, we have

$$\int_{u}^{v} f(t) dt \in (\mathbf{v} - \mathbf{u}) \cdot \mathbf{f}(\mathbf{u} \cup \mathbf{v}).$$

Example and splitting

$$\int_0^1 t \, dt \in (1-0) \cdot [0;1] = [0;1]$$

Lemma (Naive integral enclosure)

For any intervals \mathbf{u}, \mathbf{v} such that $u \in \mathbf{u}$ and $v \in \mathbf{v}$, we have

$$\int_{u}^{v} f(t) dt \in (\mathbf{v} - \mathbf{u}) \cdot \mathbf{f}(\mathbf{u} \cup \mathbf{v}).$$

Example and splitting

$$\int_{0}^{1} t \, dt \in (1-0) \cdot [0;1] = [0;1]$$

$$\in (0.5-0) \cdot [0;0.5] + (1-0.5) \cdot [0.5;1] = [0.25;0.75]$$

Lemma (Naive integral enclosure)

For any intervals \mathbf{u}, \mathbf{v} such that $u \in \mathbf{u}$ and $v \in \mathbf{v}$, we have

$$\int_{u}^{v} f(t) dt \in (\mathbf{v} - \mathbf{u}) \cdot \mathbf{f}(\mathbf{u} \cup \mathbf{v}).$$

Example and splitting

$$\int_0^1 t \, dt \in (1-0) \cdot [0;1] = [0;1]$$

$$\in (0.5-0) \cdot [0;0.5] + (1-0.5) \cdot [0.5;1] = [0.25;0.75]$$

Rule of thumb

Doubling the computation time increases the accuracy by one bit.

Polynomial Integral Enclosure

Lemma (Polynomial integral enclosure)

Suppose f is approximated on [u, v] by $p \in \mathbb{R}[X]$ and $\Delta \in \mathbb{I}$ in the sense that $\forall x \in [u, v], f(x) - p(x) \in \Delta$. Then for any primitive P of p

$$\int_{u}^{v} f(t) dt \in P(\mathbf{v}) - P(\mathbf{u}) + (\mathbf{v} - \mathbf{u}) \cdot \mathbf{\Delta}.$$

Polynomial Integral Enclosure

Lemma (Polynomial integral enclosure)

Suppose f is approximated on [u,v] by $p \in \mathbb{R}[X]$ and $\Delta \in \mathbb{I}$ in the sense that $\forall x \in [u,v], \ f(x)-p(x) \in \Delta$. Then for any primitive P of p

$$\int_{u}^{v} f(t) dt \in P(\mathbf{v}) - P(\mathbf{u}) + (\mathbf{v} - \mathbf{u}) \cdot \mathbf{\Delta}.$$

Obtaining rigorous polynomial approximations

- Compute truncated Taylor series for transcendental functions.
- Combine polynomial approximations, e.g. $(P_1, \Delta_1) + (P_2, \Delta_2) = (P_1 + P_2, \Delta_1 + \Delta_2)$.

Adaptive Splitting

Computing an integral enclosure at a given accuracy

```
Inputs: interval [u, v], target width \delta.
Output: enclosure of \int_{u}^{v} f of width at most \delta.
Let m be the midpoint of [u, v].
Let i_1 and i_2 be enclosures of \int_{-\infty}^{m} f and \int_{-\infty}^{\infty} f.
If w(\mathbf{i}_1 + \mathbf{i}_2) > \delta,
       if w(\mathbf{i}_1) < \delta/2,
              recompute \mathbf{i}_2 recursively using [m, v] and \delta - w(\mathbf{i}_1),
       if w(\mathbf{i}_2) \leq \delta/2,
              recompute \mathbf{i}_1 recursively using [u, m] and \delta - w(\mathbf{i}_2),
       otherwise recompute recursively both i_1 and i_2 using \delta/2.
Return \mathbf{i}_1 + \mathbf{i}_2.
```

Integrability

Lemma (Naive integral enclosure)

For any intervals \mathbf{u}, \mathbf{v} such that $u \in \mathbf{u}$ and $v \in \mathbf{v}$, if f is integrable between u and v, $\int_{u}^{v} f(t) dt \in (\mathbf{v} - \mathbf{u}) \cdot \mathbf{f}(\mathbf{u} \cup \mathbf{v})$.

Integrability

Lemma (Naive integral enclosure)

For any intervals \mathbf{u}, \mathbf{v} such that $u \in \mathbf{u}$ and $v \in \mathbf{v}$, if \mathbf{f} is integrable between u and v, $\int_{u}^{v} f(t) dt \in (\mathbf{v} - \mathbf{u}) \cdot \mathbf{f}(\mathbf{u} \cup \mathbf{v})$.

Lemma (Naive integral enclosure and integrability)

For any intervals \mathbf{u}, \mathbf{v} such that $u \in \mathbf{u}$ and $v \in \mathbf{v}$, if $(\mathbf{v} - \mathbf{u}) \cdot \mathbf{f}(\mathbf{u} \cup \mathbf{v})$ evaluates to an interval \mathbf{i} , then f is integrable on [u, v], and $\int_{u}^{v} f(t) dt \in \mathbf{i}$.

Integrability

Lemma (Naive integral enclosure)

For any intervals \mathbf{u}, \mathbf{v} such that $u \in \mathbf{u}$ and $v \in \mathbf{v}$, if f is integrable between u and v, $\int_{u}^{v} f(t) dt \in (\mathbf{v} - \mathbf{u}) \cdot \mathbf{f}(\mathbf{u} \cup \mathbf{v})$.

Lemma (Naive integral enclosure and integrability)

For any intervals \mathbf{u}, \mathbf{v} such that $u \in \mathbf{u}$ and $v \in \mathbf{v}$, if $(\mathbf{v} - \mathbf{u}) \cdot \mathbf{f}(\mathbf{u} \cup \mathbf{v})$ evaluates to an interval \mathbf{i} , then f is integrable on [u, v], and $\int_{u}^{\mathbf{v}} f(t) dt \in \mathbf{i}$.

Trick

When computed by Coqlinterval, \mathbf{f} has the following property: $\mathbf{f}(\mathbf{x})$ evaluates to an intiv only if f is defined and continuous on \mathbf{x} .

Outline

- Introduction
- Numerical enclosures of integrals
- **Examples**
 - Demo
 - Comparison to other tools
 - Helfgott's integral on MathOverflow
 - Rump's integral in Tucker's book
- Conclusion

Demo

$$\int_0^1 \sqrt{1 - x^2} \ dx = \frac{\pi}{4}$$

$$\int_{0}^{1} \sqrt{1 - x^2} \ dx = \frac{\pi}{4}$$

Comparison to Other Tools

- Matlab/Octave: numerical quadrature, quad (Gauss), quadv (Simpson), quadcc (Clenshaw-Curtis), quadgk (Gauss-Kronrod), quad1 (Lobatto).
- Intlab: reliable quadrature using Taylor models.
- VNODE-LP: reliable ODE solver using Taylor models.

Non-Smooth Integrand

Example (Helfgott's integral on MathOverflow)

$$\int_0^1 \left| \left(x^4 + 10x^3 + 19x^2 - 6x - 6 \right) \exp x \right| dx$$

Results when asked for 15 correct digits

Non-Smooth Integrand

Example (Helfgott's integral on MathOverflow)

$$\int_0^1 \left| \left(x^4 + 10x^3 + 19x^2 - 6x - 6 \right) \exp x \right| dx$$

Results when asked for 15 correct digits

Matlab quadv, quadcc, quadl: correct answer.

Non-Smooth Integrand

Example (Helfgott's integral on MathOverflow)

$$\int_0^1 \left| \left(x^4 + 10x^3 + 19x^2 - 6x - 6 \right) \exp x \right| dx$$

Results when asked for 15 correct digits

Matlab quadv, quadcc, quad1: correct answer.

- Matlab quad, quadgk: only 10 correct digits, no warning.

Example (Helfgott's integral on MathOverflow)

$$\int_0^1 \left| \left(x^4 + 10x^3 + 19x^2 - 6x - 6 \right) \exp x \right| dx$$

Results when asked for 15 correct digits

- Matlab quadv, quadcc, quadl: correct answer.
- Matlab quad, quadgk: only 10 correct digits, no warning.
- Intlab verifyquad: incorrect enclosure.

Non-Smooth Integrand

Example (Helfgott's integral on MathOverflow)

$$\int_0^1 \left| \left(x^4 + 10x^3 + 19x^2 - 6x - 6 \right) \exp x \right| dx$$

Results when asked for 15 correct digits

- Matlab quadv, quadcc, quadl: correct answer.
- Matlab quad, quadgk: only 10 correct digits, no warning.
- Intlab verifyquad: incorrect enclosure.
 - (Absolute values are now forbidden inside integrands.) \diamond

Example (Helfgott's integral on MathOverflow)

$$\int_0^1 \left| \left(x^4 + 10x^3 + 19x^2 - 6x - 6 \right) \exp x \right| dx$$

Results when asked for 15 correct digits

- Matlab quadv, quadcc, quadl: correct answer.
- Matlab quad, quadgk: only 10 correct digits, no warning.
- Intlab verifyquad: incorrect enclosure.
 - (Absolute values are now forbidden inside integrands.)
- VNODE-LP: absolute value not supported.

Non-Smooth Integrand

Example (Helfgott's integral on MathOverflow)

$$\int_0^1 \left| \left(x^4 + 10x^3 + 19x^2 - 6x - 6 \right) \exp x \right| dx$$

Results using CogInterval

Target	Time	Degree	Depth	Prec
10^{-3}	0.7	5	8	30
10^{-6}	0.9	6	13	40
10^{-9}	1.3	8	18	50
10^{-12}	1.9	10	22	60
10^{-15}	2.7	12	28	70

Example (Rump's integral in Tucker's book)

$$\int_0^8 \sin(x + \exp x) \, dx$$

Results when asked for 10 correct digits

Example (Rump's integral in Tucker's book)

$$\int_0^8 \sin(x + \exp x) \, dx$$

Results when asked for 10 correct digits

X Matlab quad, quadcc, quadgk: only 1 to 3 correct digits, no warning.

Example (Rump's integral in Tucker's book)

$$\int_0^8 \sin(x + \exp x) \, dx$$

Results when asked for 10 correct digits

- X Matlab quad, quadcc, quadgk: only 1 to 3 correct digits, no warning.
- Matlab quadv: no correct digits, with a warning.

Example (Rump's integral in Tucker's book)

$$\int_0^8 \sin(x + \exp x) \, dx$$

Results when asked for 10 correct digits

- Matlab quad, quadcc, quadgk: X only 1 to 3 correct digits, no warning.
- Matlab quady: no correct digits, with a warning.
- Matlab quad1: correct answer in 10 seconds.

Example (Rump's integral in Tucker's book)

$$\int_0^8 \sin(x + \exp x) \, dx$$

Results when asked for 10 correct digits

 Matlab quad, quadcc, quadgk: X only 1 to 3 correct digits, no warning.

- Matlab quady: no correct digits, with a warning.
- Matlab guad1: correct answer in 10 seconds.
- Intlab verifyquad: correct answer in 2 seconds.

Example (Rump's integral in Tucker's book)

$$\int_0^8 \sin(x + \exp x) \, dx$$

Results when asked for 10 correct digits

X Matlab quad, quadcc, quadgk: only 1 to 3 correct digits, no warning.

- Matlab quady: no correct digits, with a warning.
- Matlab guad1: correct answer in 10 seconds.
- Intlab verifyquad: correct answer in 2 seconds.
- VNODE-LP: correct answer.

Example (Rump's integral in Tucker's book)

$$\int_0^8 \sin(x + \exp x) \, dx$$

Results using CoqInterval

Target	Time	Degree	Depth	Prec
10^{-1}	81.0	6	12	30
10^{-2}	123.6	8	12	30
10^{-3}	183.4	10	12	30
10^{-4}	277.6	12	12	30

Example (Rump's integral in Tucker's book)

$$\int_0^8 \sin(x + \exp x) \, dx$$

Results using CoqInterval

Target	Time	Degree	Depth	Prec
10^{-1}	81.0	6	12	30
10^{-2}	123.6	8	12	30
10^{-3}	183.4	10	12	30
10^{-4}	277.6	12	12	30

High accuracy is still out of range on such an example.

Outline

- Introduction
- 2 Numerical enclosures of integrals
- 3 Examples
- 4 Conclusion

Contribution

• formally guaranteed bounds on univariate definite integrals,

Contribution

- formally guaranteed bounds on univariate definite integrals,
- integrability and integration in a single pass,

Contribution

- formally guaranteed bounds on univariate definite integrals,
- integrability and integration in a single pass,
- simple algorithms yet efficient in practice.

Contribution

- formally guaranteed bounds on univariate definite integrals,
- integrability and integration in a single pass,
- simple algorithms yet efficient in practice.

Future works

support indefinite integrals,

Contribution

- formally guaranteed bounds on univariate definite integrals,
- integrability and integration in a single pass,
- simple algorithms yet efficient in practice.

Future works

- support indefinite integrals,
- support multivariate integrals,

Contribution

- formally guaranteed bounds on univariate definite integrals,
- integrability and integration in a single pass,
- simple algorithms yet efficient in practice.

Future works

- support indefinite integrals,
- support multivariate integrals,
- numerically solve ODEs.

Contribution

- formally guaranteed bounds on univariate definite integrals,
- integrability and integration in a single pass,
- simple algorithms yet efficient in practice.

Future works

- support indefinite integrals,
- support multivariate integrals,
- numerically solve ODEs.

http://coq-interval.gforge.inria.fr/