
Computing correctly rounded logarithms
with fixed-point operations

Julien Le Maire, Florent de Dinechin and Jean-Michel Muller

Outline

Introduction and context

The Table Maker’s dilemma

One algorithm, many variants

Results

Bonus: a floating-point in, fixed-point out variant

Conclusions

J. Le Maire, F. de Dinechin and J.-M. Muller Computing correctly rounded logarithm with fixed-point operations 2

Preparing 2017, international year of the logarithm

John Napier (aka Neper), 1550-1617
popularized the use of the point in
decimal notation

Mirifici Logarithmorum Canonis
Descriptio (1614)

Celebrate a very specific year:
400th anniversary of Napier’s death
6th logarithmic anniversary of the 1614 publication

... with three amazing presentations this morning,
now doubt they will trigger many others.

J. Le Maire, F. de Dinechin and J.-M. Muller Computing correctly rounded logarithm with fixed-point operations 3

Preparing 2017, international year of the logarithm

John Napier (aka Neper), 1550-1617
popularized the use of the point in
decimal notation
Mirifici Logarithmorum Canonis
Descriptio (1614)

Celebrate a very specific year:
400th anniversary of Napier’s death
6th logarithmic anniversary of the 1614 publication

... with three amazing presentations this morning,
now doubt they will trigger many others.

J. Le Maire, F. de Dinechin and J.-M. Muller Computing correctly rounded logarithm with fixed-point operations 3

Preparing 2017, international year of the logarithm

John Napier (aka Neper), 1550-1617
popularized the use of the point in
decimal notation
Mirifici Logarithmorum Canonis
Descriptio (1614)

Celebrate a very specific year:
400th anniversary of Napier’s death
6th logarithmic anniversary of the 1614 publication

... with three amazing presentations this morning,
now doubt they will trigger many others.

J. Le Maire, F. de Dinechin and J.-M. Muller Computing correctly rounded logarithm with fixed-point operations 3

This talk is also about hardware and C

1960 1980 2000

IEEE-754 mainstream floating-point
32-bits mainstream integer

An experiment
Implementing the floating-point logarithm function

using only integer arithmetic
for performance

(previous work motivated by lack of FP hardware)

J. Le Maire, F. de Dinechin and J.-M. Muller Computing correctly rounded logarithm with fixed-point operations 4

This talk is also about hardware and C

1960 1980 2000

IEEE-754 mainstream floating-point
32-bits 64-bits mainstream integer

An experiment
Implementing the floating-point logarithm function

using only integer arithmetic
for performance

(previous work motivated by lack of FP hardware)

J. Le Maire, F. de Dinechin and J.-M. Muller Computing correctly rounded logarithm with fixed-point operations 4

This talk is also about hardware and C

1960 1980 2000

IEEE-754 mainstream floating-point
32-bits 64-bits mainstream integer

An experiment
Implementing the floating-point logarithm function

using only integer arithmetic
for performance

(previous work motivated by lack of FP hardware)

J. Le Maire, F. de Dinechin and J.-M. Muller Computing correctly rounded logarithm with fixed-point operations 4

Integer better than floating-point?

64-bit floating-point, but only 52-bit precision
if you can predict the value of the exponent, exponent bits are
wasted bits.

modern 64-bit machines offer all sort of useful integer instructions
addition
multiplication 64x64→ 128 (mulq)
count leading zeroes, shifts (lzcnt, bsr)

most operations are faster on integers, especially addition
(which more or less defines the processor cycle time)

small multiprecision out of the box:
mainstream compilers (gcc, clang, icc) support int_128

addition 128x128→ 128 (add, adc)
shift on two registers (shld, shrd)

Caveat: integer SIMD/vector support still lagging behind FP
(no vector multiplication)

J. Le Maire, F. de Dinechin and J.-M. Muller Computing correctly rounded logarithm with fixed-point operations 5

Integer better than floating-point?

64-bit floating-point, but only 52-bit precision
if you can predict the value of the exponent, exponent bits are
wasted bits.

modern 64-bit machines offer all sort of useful integer instructions
addition
multiplication 64x64→ 128 (mulq)
count leading zeroes, shifts (lzcnt, bsr)

most operations are faster on integers, especially addition
(which more or less defines the processor cycle time)

small multiprecision out of the box:
mainstream compilers (gcc, clang, icc) support int_128

addition 128x128→ 128 (add, adc)
shift on two registers (shld, shrd)

Caveat: integer SIMD/vector support still lagging behind FP
(no vector multiplication)

J. Le Maire, F. de Dinechin and J.-M. Muller Computing correctly rounded logarithm with fixed-point operations 5

Integer better than floating-point?

64-bit floating-point, but only 52-bit precision
if you can predict the value of the exponent, exponent bits are
wasted bits.

modern 64-bit machines offer all sort of useful integer instructions
addition
multiplication 64x64→ 128 (mulq)
count leading zeroes, shifts (lzcnt, bsr)

most operations are faster on integers, especially addition
(which more or less defines the processor cycle time)

small multiprecision out of the box:
mainstream compilers (gcc, clang, icc) support int_128

addition 128x128→ 128 (add, adc)
shift on two registers (shld, shrd)

Caveat: integer SIMD/vector support still lagging behind FP
(no vector multiplication)

J. Le Maire, F. de Dinechin and J.-M. Muller Computing correctly rounded logarithm with fixed-point operations 5

Integer better than floating-point?

64-bit floating-point, but only 52-bit precision
if you can predict the value of the exponent, exponent bits are
wasted bits.

modern 64-bit machines offer all sort of useful integer instructions
addition
multiplication 64x64→ 128 (mulq)
count leading zeroes, shifts (lzcnt, bsr)

most operations are faster on integers, especially addition
(which more or less defines the processor cycle time)

small multiprecision out of the box:
mainstream compilers (gcc, clang, icc) support int_128

addition 128x128→ 128 (add, adc)
shift on two registers (shld, shrd)

Caveat: integer SIMD/vector support still lagging behind FP
(no vector multiplication)

J. Le Maire, F. de Dinechin and J.-M. Muller Computing correctly rounded logarithm with fixed-point operations 5

Integer better than floating-point?

64-bit floating-point, but only 52-bit precision
if you can predict the value of the exponent, exponent bits are
wasted bits.

modern 64-bit machines offer all sort of useful integer instructions
addition
multiplication 64x64→ 128 (mulq)
count leading zeroes, shifts (lzcnt, bsr)

most operations are faster on integers, especially addition
(which more or less defines the processor cycle time)

small multiprecision out of the box:
mainstream compilers (gcc, clang, icc) support int_128

addition 128x128→ 128 (add, adc)
shift on two registers (shld, shrd)

Caveat: integer SIMD/vector support still lagging behind FP
(no vector multiplication)

J. Le Maire, F. de Dinechin and J.-M. Muller Computing correctly rounded logarithm with fixed-point operations 5

Logarithm, the mathematical version

ln (a × b) = ln (a) + ln (b)
ln (ba) = a × ln(b)
Taylor: for x small, ln(1 + x) ≈ x − x2/2 + x3/3...

1 2 3 4 5 6 7

−2

−1

1

2

y

x

y = ln(x)

J. Le Maire, F. de Dinechin and J.-M. Muller Computing correctly rounded logarithm with fixed-point operations 6

Logarithm, the mathematical version

ln (a × b) = ln (a) + ln (b)

ln (ba) = a × ln(b)
Taylor: for x small, ln(1 + x) ≈ x − x2/2 + x3/3...

1 2 3 4 5 6 7

−2

−1

1

2

y

x

y = ln(x)

J. Le Maire, F. de Dinechin and J.-M. Muller Computing correctly rounded logarithm with fixed-point operations 6

Logarithm, the mathematical version

ln (a × b) = ln (a) + ln (b)
ln (ba) = a × ln(b)

Taylor: for x small, ln(1 + x) ≈ x − x2/2 + x3/3...

1 2 3 4 5 6 7

−2

−1

1

2

y

x

y = ln(x)

J. Le Maire, F. de Dinechin and J.-M. Muller Computing correctly rounded logarithm with fixed-point operations 6

Logarithm, the mathematical version

ln (a × b) = ln (a) + ln (b)
ln (ba) = a × ln(b)
Taylor: for x small, ln(1 + x) ≈ x − x2/2 + x3/3...

1 2 3 4 5 6 7

−2

−1

1

2

y

x

y = ln(x)

J. Le Maire, F. de Dinechin and J.-M. Muller Computing correctly rounded logarithm with fixed-point operations 6

Logarithm, the floating-point version

The natural logarithm is called log
(you will also find log2 and log10 and a few others)

1 2 3 4 5 6 7

−2

−1

1

2

y

x

y = ln(x)

Range: ∀x ∈ F64 log(x) ∈ [−745, 710]
looks like a waste of exponent bits...

Rounding
Recommended: ∀x ∈ F64 log(x) = ◦ (ln(x))
In practice: implementing this definition difficult and expensive, due
to the Table Maker’s dilemma.

J. Le Maire, F. de Dinechin and J.-M. Muller Computing correctly rounded logarithm with fixed-point operations 7

Logarithm, the floating-point version

The natural logarithm is called log
(you will also find log2 and log10 and a few others)

1 2 3 4 5 6 7

−2

−1

1

2

y

x

y = ln(x)

Range: ∀x ∈ F64 log(x) ∈ [−745, 710]
looks like a waste of exponent bits...

Rounding
Recommended: ∀x ∈ F64 log(x) = ◦ (ln(x))
In practice: implementing this definition difficult and expensive, due
to the Table Maker’s dilemma.

J. Le Maire, F. de Dinechin and J.-M. Muller Computing correctly rounded logarithm with fixed-point operations 7

Outline

Introduction and context

The Table Maker’s dilemma

One algorithm, many variants

Results

Bonus: a floating-point in, fixed-point out variant

Conclusions

J. Le Maire, F. de Dinechin and J.-M. Muller Computing correctly rounded logarithm with fixed-point operations 8

The first digital signature algorithm

I want 12 significant digits
I have an approximation scheme that
provides 14 digits
or,

y = log(x)± 10−14

“Usually” that’s enough to round

y = x , xxxxxxxxxxx17± 10−14

y = x , xxxxxxxxxxx83± 10−14

Dilemma when

y = x , xxxxxxxxxxx50± 10−14

The first table-makers rounded these cases randomly,
and recorded them to confound copiers.

J. Le Maire, F. de Dinechin and J.-M. Muller Computing correctly rounded logarithm with fixed-point operations 9

The first digital signature algorithm

I want 12 significant digits

I have an approximation scheme that
provides 14 digits
or,

y = log(x)± 10−14

“Usually” that’s enough to round

y = x , xxxxxxxxxxx17± 10−14

y = x , xxxxxxxxxxx83± 10−14

Dilemma when

y = x , xxxxxxxxxxx50± 10−14

The first table-makers rounded these cases randomly,
and recorded them to confound copiers.

J. Le Maire, F. de Dinechin and J.-M. Muller Computing correctly rounded logarithm with fixed-point operations 9

The first digital signature algorithm

I want 12 significant digits
I have an approximation scheme that
provides 14 digits

or,
y = log(x)± 10−14

“Usually” that’s enough to round

y = x , xxxxxxxxxxx17± 10−14

y = x , xxxxxxxxxxx83± 10−14

Dilemma when

y = x , xxxxxxxxxxx50± 10−14

The first table-makers rounded these cases randomly,
and recorded them to confound copiers.

J. Le Maire, F. de Dinechin and J.-M. Muller Computing correctly rounded logarithm with fixed-point operations 9

The first digital signature algorithm

I want 12 significant digits
I have an approximation scheme that
provides 14 digits
or,

y = log(x)± 10−14

“Usually” that’s enough to round

y = x , xxxxxxxxxxx17± 10−14

y = x , xxxxxxxxxxx83± 10−14

Dilemma when

y = x , xxxxxxxxxxx50± 10−14

The first table-makers rounded these cases randomly,
and recorded them to confound copiers.

J. Le Maire, F. de Dinechin and J.-M. Muller Computing correctly rounded logarithm with fixed-point operations 9

The first digital signature algorithm

I want 12 significant digits
I have an approximation scheme that
provides 14 digits
or,

y = log(x)± 10−14

“Usually” that’s enough to round

y = x , xxxxxxxxxxx17± 10−14

y = x , xxxxxxxxxxx83± 10−14

Dilemma when

y = x , xxxxxxxxxxx50± 10−14

The first table-makers rounded these cases randomly,
and recorded them to confound copiers.

J. Le Maire, F. de Dinechin and J.-M. Muller Computing correctly rounded logarithm with fixed-point operations 9

The first digital signature algorithm

I want 12 significant digits
I have an approximation scheme that
provides 14 digits
or,

y = log(x)± 10−14

“Usually” that’s enough to round

y = x , xxxxxxxxxxx17± 10−14

y = x , xxxxxxxxxxx83± 10−14

Dilemma when

y = x , xxxxxxxxxxx50± 10−14

The first table-makers rounded these cases randomly,
and recorded them to confound copiers.

J. Le Maire, F. de Dinechin and J.-M. Muller Computing correctly rounded logarithm with fixed-point operations 9

The first digital signature algorithm

I want 12 significant digits
I have an approximation scheme that
provides 14 digits
or,

y = log(x)± 10−14

“Usually” that’s enough to round

y = x , xxxxxxxxxxx17± 10−14

y = x , xxxxxxxxxxx83± 10−14

Dilemma when

y = x , xxxxxxxxxxx50± 10−14

The first table-makers rounded these cases randomly,
and recorded them to confound copiers.

J. Le Maire, F. de Dinechin and J.-M. Muller Computing correctly rounded logarithm with fixed-point operations 9

Solving the Table Maker’s dilemma

real numbers

two consecutive floating-point
numbers

computed logarithm, with error margin

y = x , xxxxxxxxxxx17± 10−14

Easy to round

computed logarithm, with error margin

y = x , xxxxxxxxxxx50± 10−14

Difficult to round

computed logarithm, with error margin

y = x , xxxxxxxxxxx4996± 10−16

Computing more accurately solves it

J. Le Maire, F. de Dinechin and J.-M. Muller Computing correctly rounded logarithm with fixed-point operations 10

Solving the Table Maker’s dilemma

real numbers

two consecutive floating-point
numbers

computed logarithm, with error margin

y = x , xxxxxxxxxxx17± 10−14

Easy to round

computed logarithm, with error margin

y = x , xxxxxxxxxxx50± 10−14

Difficult to round

computed logarithm, with error margin

y = x , xxxxxxxxxxx4996± 10−16

Computing more accurately solves it

J. Le Maire, F. de Dinechin and J.-M. Muller Computing correctly rounded logarithm with fixed-point operations 10

Solving the Table Maker’s dilemma

real numbers

two consecutive floating-point
numbers

computed logarithm, with error margin

y = x , xxxxxxxxxxx17± 10−14

Easy to round

computed logarithm, with error margin

y = x , xxxxxxxxxxx50± 10−14

Difficult to round

computed logarithm, with error margin

y = x , xxxxxxxxxxx4996± 10−16

Computing more accurately solves it

J. Le Maire, F. de Dinechin and J.-M. Muller Computing correctly rounded logarithm with fixed-point operations 10

Solving the Table Maker’s dilemma

real numbers

two consecutive floating-point
numbers

computed logarithm, with error margin

y = x , xxxxxxxxxxx17± 10−14

Easy to round

computed logarithm, with error margin

y = x , xxxxxxxxxxx50± 10−14

Difficult to round

computed logarithm, with error margin

y = x , xxxxxxxxxxx4996± 10−16

Computing more accurately solves it

J. Le Maire, F. de Dinechin and J.-M. Muller Computing correctly rounded logarithm with fixed-point operations 10

Solving the Table Maker’s dilemma

real numbers

two consecutive floating-point
numbers

computed logarithm, with error margincomputed logarithm, with error margincomputed logarithm, with error margin

∀x ∈ F, ln (x) is transcendental
There is a finite number (264) of floating-point numbers.
One of them is the worst to round
Muller and Lefèvre computed that it requires an accuracy of 2−113:

evaluating the log to this accuracy enables correct rounding
but we don’t need this accuracy for most cases

(and it is more expensive to compute)

J. Le Maire, F. de Dinechin and J.-M. Muller Computing correctly rounded logarithm with fixed-point operations 11

Solving the Table Maker’s dilemma

real numbers

two consecutive floating-point
numbers

computed logarithm, with error margincomputed logarithm, with error margincomputed logarithm, with error margin

∀x ∈ F, ln (x) is transcendental
There is a finite number (264) of floating-point numbers.

One of them is the worst to round
Muller and Lefèvre computed that it requires an accuracy of 2−113:

evaluating the log to this accuracy enables correct rounding
but we don’t need this accuracy for most cases

(and it is more expensive to compute)

J. Le Maire, F. de Dinechin and J.-M. Muller Computing correctly rounded logarithm with fixed-point operations 11

Solving the Table Maker’s dilemma

real numbers

two consecutive floating-point
numbers

computed logarithm, with error margin

computed logarithm, with error margincomputed logarithm, with error margin

∀x ∈ F, ln (x) is transcendental
There is a finite number (264) of floating-point numbers.
One of them is the worst to round

Muller and Lefèvre computed that it requires an accuracy of 2−113:
evaluating the log to this accuracy enables correct rounding

but we don’t need this accuracy for most cases
(and it is more expensive to compute)

J. Le Maire, F. de Dinechin and J.-M. Muller Computing correctly rounded logarithm with fixed-point operations 11

Solving the Table Maker’s dilemma

real numbers

two consecutive floating-point
numbers

computed logarithm, with error margin

computed logarithm, with error margincomputed logarithm, with error margin

∀x ∈ F, ln (x) is transcendental
There is a finite number (264) of floating-point numbers.
One of them is the worst to round
Muller and Lefèvre computed that it requires an accuracy of 2−113:

evaluating the log to this accuracy enables correct rounding

but we don’t need this accuracy for most cases
(and it is more expensive to compute)

J. Le Maire, F. de Dinechin and J.-M. Muller Computing correctly rounded logarithm with fixed-point operations 11

Solving the Table Maker’s dilemma

real numbers

two consecutive floating-point
numbers

computed logarithm, with error margin

computed logarithm, with error margin

computed logarithm, with error margin

∀x ∈ F, ln (x) is transcendental
There is a finite number (264) of floating-point numbers.
One of them is the worst to round
Muller and Lefèvre computed that it requires an accuracy of 2−113:

evaluating the log to this accuracy enables correct rounding
but we don’t need this accuracy for most cases

(and it is more expensive to compute)

J. Le Maire, F. de Dinechin and J.-M. Muller Computing correctly rounded logarithm with fixed-point operations 11

Solving the Table Maker’s dilemma

real numbers

two consecutive floating-point
numbers

computed logarithm, with error margin

computed logarithm, with error margincomputed logarithm, with error margin

∀x ∈ F, ln (x) is transcendental
There is a finite number (264) of floating-point numbers.
One of them is the worst to round
Muller and Lefèvre computed that it requires an accuracy of 2−113:

evaluating the log to this accuracy enables correct rounding
but we don’t need this accuracy for most cases

(and it is more expensive to compute)

J. Le Maire, F. de Dinechin and J.-M. Muller Computing correctly rounded logarithm with fixed-point operations 11

On-demand accuracy

CRLibm refinement of Ziv’s technique:
First step: quick-and-dirty evaluation of ln(x)

(just accurate enough to ensure correct rounding in most cases)
test if rounding can be decided
if not (rarely), recompute ln(x) with the worst-case accuracy

Trade-off between first and second steps:

MeanTime = Time(1st step) + Pr[need 2nd step] · Time(2nd step)

Best so far: Time(2nd step) ≈ 10× Time(1st step)
In this work we improve this to a factor 2.

J. Le Maire, F. de Dinechin and J.-M. Muller Computing correctly rounded logarithm with fixed-point operations 12

On-demand accuracy

CRLibm refinement of Ziv’s technique:
First step: quick-and-dirty evaluation of ln(x)

(just accurate enough to ensure correct rounding in most cases)
test if rounding can be decided
if not (rarely), recompute ln(x) with the worst-case accuracy

Trade-off between first and second steps:

MeanTime = Time(1st step) + Pr[need 2nd step] · Time(2nd step)

Best so far: Time(2nd step) ≈ 10× Time(1st step)
In this work we improve this to a factor 2.

J. Le Maire, F. de Dinechin and J.-M. Muller Computing correctly rounded logarithm with fixed-point operations 12

On-demand accuracy

CRLibm refinement of Ziv’s technique:
First step: quick-and-dirty evaluation of ln(x)

(just accurate enough to ensure correct rounding in most cases)
test if rounding can be decided
if not (rarely), recompute ln(x) with the worst-case accuracy

Trade-off between first and second steps:

MeanTime = Time(1st step) + Pr[need 2nd step] · Time(2nd step)

Best so far: Time(2nd step) ≈ 10× Time(1st step)
In this work we improve this to a factor 2.

J. Le Maire, F. de Dinechin and J.-M. Muller Computing correctly rounded logarithm with fixed-point operations 12

Outline

Introduction and context

The Table Maker’s dilemma

One algorithm, many variants

Results

Bonus: a floating-point in, fixed-point out variant

Conclusions

J. Le Maire, F. de Dinechin and J.-M. Muller Computing correctly rounded logarithm with fixed-point operations 13

The big picture

1. Filter special cases (negative numbers, ∞, ...)
2. Argument range reduction
3. Polynomial approximation
4. Solution reconstruction
5. Error evaluation and rounding test
6. If more accuracy needed:

Rerun the steps 3 and 4 with the worst-case accuracy.

J. Le Maire, F. de Dinechin and J.-M. Muller Computing correctly rounded logarithm with fixed-point operations 14

IEEE 754 floating-point

s E
(11 bits)

fraction x ∈ [0, 1)
(52 bits)

Value represented:
(−1)s · 2E · (1 + x)

Special cases (±∞, 0,NaN) encoded in special values of the exponent
field

J. Le Maire, F. de Dinechin and J.-M. Muller Computing correctly rounded logarithm with fixed-point operations 15

IEEE 754 floating-point

s E
(11 bits)

fraction x ∈ [0, 1)
(52 bits)

Value represented:
(−1)s · 2E · (1 + x)

Special cases (±∞, 0,NaN) encoded in special values of the exponent
field

J. Le Maire, F. de Dinechin and J.-M. Muller Computing correctly rounded logarithm with fixed-point operations 15

Special cases: businesss as usual
/∗ r e i n t e r p r e t x to man ipu l a t e i t s b i t s more e a s i l y ∗/
u in t64_t x b i t s = ((union { double d ; u in t64_t u ; }){ x }) . u ;
i n t xe = x b i t s >> 52 ;

/∗ f i l t e r the s p e c i a l c a s e s : ! (x i s n o r m a l i z e d and 0 < x < +I n f) ∗/
i f (0 x7FEu <= (uns igned) xe − 1u) {

/∗ x = +− 0 : r a i s e a D iv ideByze ro , r e t u r n − I n f ∗/
i f ((x b i t s & ~(1 u l l << 63)) == 0) r e t u r n −1 .0/0 .0 ;
/∗ x < 0 . 0 : r a i s e a I n v a l i d O p e r a t i o n , r e t u r n a qNaN ∗/
i f ((x b i t s & (1 u l l << 63)) != 0) r e t u r n (x−x) / 0 ;
/∗ x = qNaN : r e t u r n a qNaN

x = sNaN : r a i s e a I n v a l i d O p e r a t i o n , r e t u r n a qNaN
x = +I n f : r e t u r n +I n f ∗/

i f (xe != 0) r e t u r n x+x ;
/∗ x subnormal : change x to a n o r m a l i z e d number ∗/
e l s e {

i n t u = c l z 6 4 (x b i t s) − 12 ;
x b i t s <<= u + 1 ;
xe −= u ;

}
}
/∗ X = 2^ xe ∗ (x b i t s /2^52) ∗/
xe −= 1023 ;
x b i t s = (x b i t s & 0xFFFFFFFFFFFFFull) + (UINT64_C(1) << 52) ;

Only interesting line: the subnormal managementJ. Le Maire, F. de Dinechin and J.-M. Muller Computing correctly rounded logarithm with fixed-point operations 16

First argument range reduction

input = 2E · (1 + x)
ln(input) = E · ln (2) + ln (1 + x)

Evaluation algorithm:
approximate ln (1 + x) with a polynomial p(x)

degree needed: at least 26
evaluate E · ln (2)
add both terms

J. Le Maire, F. de Dinechin and J.-M. Muller Computing correctly rounded logarithm with fixed-point operations 17

First argument range reduction

input = 2E · (1 + x)
ln(input) = E · ln (2) + ln (1 + x)

Evaluation algorithm:
approximate ln (1 + x) with a polynomial p(x)

degree needed: at least 26
evaluate E · ln (2)
add both terms

J. Le Maire, F. de Dinechin and J.-M. Muller Computing correctly rounded logarithm with fixed-point operations 17

Tang’s range reduction

1 + x : 1. fractional part on 52 bits

x1
inv x : 0.

1 + y : 1000000.
0 -6

A table, addressed by the x1 most significand bits of x , stores

inv x ≈
1

1 + x and ln(inv x)

As inv x · (1 + x) ≈ 1, define
inv x · (1 + x) = 1 + y

Then
ln(1 + x) = ln(1 + y)− ln(inv x)

J. Le Maire, F. de Dinechin and J.-M. Muller Computing correctly rounded logarithm with fixed-point operations 18

Tang’s range reduction

1 + x : 1. fractional part on 52 bits

x1
inv x : 0.

1 + y : 1000000.
0 -6

A table, addressed by the x1 most significand bits of x , stores

inv x ≈
1

1 + x and ln(inv x)

As inv x · (1 + x) ≈ 1, define
inv x · (1 + x) = 1 + y

Then
ln(1 + x) = ln(1 + y)− ln(inv x)

J. Le Maire, F. de Dinechin and J.-M. Muller Computing correctly rounded logarithm with fixed-point operations 18

Tang’s range reduction

1 + x : 1. fractional part on 52 bits

x1
inv x : 0.

1 + y : 1000000.
0 -6

A table, addressed by the x1 most significand bits of x , stores

inv x ≈
1

1 + x and ln(inv x)

As inv x · (1 + x) ≈ 1, define
inv x · (1 + x) = 1 + y

Then
ln(1 + x) = ln(1 + y)− ln(inv x)

J. Le Maire, F. de Dinechin and J.-M. Muller Computing correctly rounded logarithm with fixed-point operations 18

Tang’s range reduction algorithm

1 + x : 1. fractional part on 52 bits

x1
inv x : 0.

1 + y : 1000000. fractional part on 64 bits plus 6 implicit zeros

0 -6

Extract the index x1
Read, from a table addressed by x1, both inv x and ln(inv x)
compute y = inv x · (1 + x)− 1 (exactly)
approximate ln (1 + y) with a polynomial p(y)

Degree needed: 8
add it all:

ln(input) ≈ E · ln (2) + p (y) − ln(inv x)

J. Le Maire, F. de Dinechin and J.-M. Muller Computing correctly rounded logarithm with fixed-point operations 19

Here integers are better than floating-point

1 + x : 1. fractional part on 52 bits

x1
inv x : 0. fractional part on 18 bits

1 + y : 1000000. fractional part on 64 bits plus 6 implicit zeros

0 -64 -70-6

With a 53-bit 1 + x we can tabulate inv x on 18 bits:
the exact product would need 71 bits
but we can predict the 7 leading bits
... so we can let them overflow quietly and use a 64× 64→ 64
multiplication.

J. Le Maire, F. de Dinechin and J.-M. Muller Computing correctly rounded logarithm with fixed-point operations 20

Random remark about floating-point
implementations of Tang’s reduction

There are reciprocal approximation instructions in most recent
processors, including this pentium.
Computing y = inv x · (1 + x)− 1 exactly requires an FMA, or
double-extended, or a bit of double-FP arithmetic

J. Le Maire, F. de Dinechin and J.-M. Muller Computing correctly rounded logarithm with fixed-point operations 21

Two levels of Tang reduction

0 -64 -75-11

1 + x : 1. fractional part on 52 bits

x1
inv x : 0. fractional part on 8 bits

1 + y : 100000. fractional part on 60 bits including 5 zeros

y1
inv y : 0. fractional part on 15 bits

1 + z : 100000000000. fractional part on 64 bits plus 11 implicit zeros

x ∈ [0, 1)
y ∈

[
0, 2−5.41503)

z ∈
[
0, 2−11.8262)

x1 takes 64 different values
y1 takes 96 different values

Again, the whole reduction of x to z is computed exactly in 64-bit int.

J. Le Maire, F. de Dinechin and J.-M. Muller Computing correctly rounded logarithm with fixed-point operations 22

Ugly code 2: 2 levels of Tang’s reduction

/∗ X = 2^ xe ∗ (1/R) ∗ Y,
wi th Y = y /2^(52 + ARG_REDUC_1_SIZE)
and 1/R = argReduc1 [r i] . v a l /2^ARG_REDUC_1_SIZE ∗/

u in t8_t r i = (x b i t s >> (52 − ARG_REDUC_1_PREC))
− (1 u << ARG_REDUC_1_PREC) ;

u in t64_t y = ARG_REDUC_1_GETVALUE(r i) ∗ x b i t s ;

/∗ Y = (1/S) ∗ (1 + dZ) ,
w i th dZ = dz /2^(52 + ARG_REDUC_1_SIZE + ARG_REDUC_2_SIZE)
and 1/S = argReduc2 [s i] . v a l /2^ARG_REDUC_2_SIZE ∗/

u in t8_t s i = (y >> (52 + ARG_REDUC_1_SIZE − ARG_REDUC_2_PREC))
− (1 u << ARG_REDUC_2_PREC) ;

u in t64_t dz = ARG_REDUC_2_GETVALUE(s i) ∗ y ;
// the i n t e g e r p a r t o f the f i x e d −p o i n t i s removed by o v e r f l o w

J. Le Maire, F. de Dinechin and J.-M. Muller Computing correctly rounded logarithm with fixed-point operations 23

Why stop at two levels of reduction?

Answer is: diminushing return.

For a target accuracy of 2−60:

interval of x degree needed
No reduction [−1/2, 1/2] 29

1 level [−2−7, 2−7] 7
2 levels [−2−12, 2−12] 4
3 levels [−2−18, 2−18] 3

Adding more levels will cost more operations than it saves...

J. Le Maire, F. de Dinechin and J.-M. Muller Computing correctly rounded logarithm with fixed-point operations 24

Parenthesis: hardware-oriented algorithms

I have been strongly encouraged to Alt-Tab to other irrelevant slides...

Arith 2007 “Return of the hardware elementary function”
Iterate on the same range reduction
Stop as soon as Taylor at order 2 is good enough:

p(z) = z − z2/2 because it is very easy to compute
Build ad-hoc rectangular multipliers
No need to tabulate 1/(1 + xi) when xi is small enough.

J. Le Maire, F. de Dinechin and J.-M. Muller Computing correctly rounded logarithm with fixed-point operations 25

Polynomial approximation (advertisement)

Back to our business.
We want to approximate log(1 + z) on an interval around 0.
Use the (now standard) tool set to obtain it.

Sollya:
finds a machine-efficient polynomial P(z)
computes a safe bound on the approximation error P(z)− ln(1 + z)

Gappa: bounds the accumulation of rounding errors
when evaluating P(z) in C

We obtain a Coq proof of the error:

real numbers

computed approximation of ln(1 + z),
with error margin

J. Le Maire, F. de Dinechin and J.-M. Muller Computing correctly rounded logarithm with fixed-point operations 26

Fixed-point means: explicit shifts

/∗ Po lynomia l ap p r o x i m a t i o n o f l o g (1+Z)/Z ~= P(Z) ,
and e v a l u a t e Z∗P(Z) ∗/

u in t64_t p = UINT64_C(0 x f f f f f f f f f f f f f f c 4)
−(h ighmul (dz ,

UINT64_C(0 x 7 f f f f f f f f f 0 9 1 8 9 5)
−(h ighmul (dz ,

UINT64_C(0 x55555509230fb34c)
−(h ighmul (dz , UINT64_C(0 x3 f f 8 f 2 ad563 f 0 e 19)

)>>IMPLICIT_ZEROS)
)>>IMPLICIT_ZEROS)

)>>IMPLICIT_ZEROS) ;
u in t128_t zp zpa r t = f u l l m u l (dz , p) ;

Note that some of the shifts are inside the constants

J. Le Maire, F. de Dinechin and J.-M. Muller Computing correctly rounded logarithm with fixed-point operations 27

Reconstructing the solution

input = 2e · (1 + x)

ln(input) = e · ln(2) + ln(inv x
−1) + ln(inv y

−1) + ln(1 + z)

11 0 -53 -117

-11

e · ln(2):

ln(inv x
−1):

ln(inv y
−1):

P(z) ≈ ln(1 + z):

sum:

“If we can predict the exponents, exponent bits are wasted bits”

J. Le Maire, F. de Dinechin and J.-M. Muller Computing correctly rounded logarithm with fixed-point operations 28

Reconstructing the solution

input = 2e · 1
inv x

· (1 + y)

ln(input) = e · ln(2) + ln(inv x
−1) + ln(inv y

−1) + ln(1 + z)

11 0 -53 -117

-11

e · ln(2):

ln(inv x
−1):

ln(inv y
−1):

P(z) ≈ ln(1 + z):

sum:

“If we can predict the exponents, exponent bits are wasted bits”

J. Le Maire, F. de Dinechin and J.-M. Muller Computing correctly rounded logarithm with fixed-point operations 28

Reconstructing the solution

input = 2e · 1
inv x

· 1
inv y

· (1 + z)

ln(input) = e · ln(2) + ln(inv x
−1) + ln(inv y

−1) + ln(1 + z)

11 0 -53 -117

-11

e · ln(2):

ln(inv x
−1):

ln(inv y
−1):

P(z) ≈ ln(1 + z):

sum:

“If we can predict the exponents, exponent bits are wasted bits”

J. Le Maire, F. de Dinechin and J.-M. Muller Computing correctly rounded logarithm with fixed-point operations 28

Reconstructing the solution

input = 2e · 1
inv x

· 1
inv y

· (1 + z)

ln(input) = e · ln(2) + ln(inv x
−1) + ln(inv y

−1) + ln(1 + z)

11 0 -53 -117

-11

e · ln(2):

ln(inv x
−1):

ln(inv y
−1):

P(z) ≈ ln(1 + z):

sum:

“If we can predict the exponents, exponent bits are wasted bits”

J. Le Maire, F. de Dinechin and J.-M. Muller Computing correctly rounded logarithm with fixed-point operations 28

Reconstructing the solution

input = 2e · 1
inv x

· 1
inv y

· (1 + z)

ln(input) = e · ln(2) + ln(inv x
−1) + ln(inv y

−1) + ln(1 + z)

11 0 -53 -117

-11

e · ln(2):

ln(inv x
−1):

ln(inv y
−1):

P(z) ≈ ln(1 + z):

sum:

“If we can predict the exponents, exponent bits are wasted bits”
J. Le Maire, F. de Dinechin and J.-M. Muller Computing correctly rounded logarithm with fixed-point operations 28

Reconstructing the solution

input = 2e · 1
inv x

· 1
inv y

· (1 + z)

ln(input) = e · ln(2) + ln(inv x
−1) + ln(inv y

−1) + ln(1 + z)

11 0 -53 -117-11

e · ln(2):

ln(inv x
−1):

ln(inv y
−1):

P(z) ≈ ln(1 + z):

sum:

“If we can predict the exponents, exponent bits are wasted bits”
J. Le Maire, F. de Dinechin and J.-M. Muller Computing correctly rounded logarithm with fixed-point operations 28

Reconstructing the solution

input = 2e · 1
inv x

· 1
inv y

· (1 + z)

ln(input) = e · ln(2) + ln(inv x
−1) + ln(inv y

−1) + ln(1 + z)

11 0 -53 -117-11

e · ln(2):

ln(inv x
−1):

ln(inv y
−1):

P(z) ≈ ln(1 + z):

sum:

“If we can predict the exponents, exponent bits are wasted bits”
J. Le Maire, F. de Dinechin and J.-M. Muller Computing correctly rounded logarithm with fixed-point operations 28

Reconstructing the solution

input = 2e · 1
inv x

· 1
inv y

· (1 + z)

ln(input) = e · ln(2) + ln(inv x
−1) + ln(inv y

−1) + ln(1 + z)

11 0 -53 -117-11

e · ln(2):

ln(inv x
−1):

ln(inv y
−1):

P(z) ≈ ln(1 + z):

sum:

“If we can predict the exponents, exponent bits are wasted bits”
J. Le Maire, F. de Dinechin and J.-M. Muller Computing correctly rounded logarithm with fixed-point operations 28

Now it really gets ugly

/∗ Compute p a r t o f the r e s u l t t h a t don ’ t depend on Z
(xe∗ l o g (2) + l o g (1/ Ri) + l o g (1/ S i)) ∗/

u in t128_t c s t p a r t =
f u l l i m u l (xe , log2fw_mid)
+ UINT128 ((i n t64_t) xe ∗ log2fw_high , 0) // no f u l l mul he r e
+ UINT128 (argReduc1 [r i] . l og_h i , argReduc1 [r i] . log_mid)
+ UINT128 (argReduc2 [s i] . l og_h i , argReduc2 [s i] . log_mid) ;

/∗ Assemble the two pa r t s , compute the s i gn , mant i s s a and exponent ∗/
u in t128_t l o n g r e s = c s t p a r t + (zp zpa r t >> (11 + IMPLICIT_ZEROS)) ;
u in t64_t s i g n = − (HI (l o n g r e s) >> 63) ; // s i g n i s 0 i f r e s u l t > 0 , and ~0 o t h e r w i s e
// i f s i g n != 0 , t h i s i s l o n g r e s = ~ l o n g r e s : i t approx imate the a b s o l u t e v a l u e (−a = ~a + 1)
// to a v o i d the approx imat ion , do : l o n g r e s = ((i n t6 4_t) s i g n + l o n g r e s) ^ UINT128 (s i gn , s i g n) ;
l o n g r e s ^= UINT128 (s i gn , s i g n) ;

i n t u = c l z 6 4 (HI (l o n g r e s)) + 1 ;
i n t exponent = 11 − u ;
u in t64_t mant i s s a = HI (l o n g r e s << u) ;

J. Le Maire, F. de Dinechin and J.-M. Muller Computing correctly rounded logarithm with fixed-point operations 29

Error evaluation

11 0 -53 -117-11

e · ln(2):

ln(inv x
−1):

ln(inv y
−1):

P(z) ≈ ln(1 + z):

sum:

ε < (|e|) · 2−117

J. Le Maire, F. de Dinechin and J.-M. Muller Computing correctly rounded logarithm with fixed-point operations 30

Error evaluation

11 0 -53 -117-11

e · ln(2):

ln(inv x
−1):

ln(inv y
−1):

P(z) ≈ ln(1 + z):

sum:

ε < (|e|) · 2−117

J. Le Maire, F. de Dinechin and J.-M. Muller Computing correctly rounded logarithm with fixed-point operations 30

Error evaluation

11 0 -53 -117-11

e · ln(2):

ln(inv x
−1):

ln(inv y
−1):

P(z) ≈ ln(1 + z):

sum:

ε < (|e|+ 1 + 1) · 2−117

J. Le Maire, F. de Dinechin and J.-M. Muller Computing correctly rounded logarithm with fixed-point operations 30

Error evaluation

11 0 -53 -117-11

e · ln(2):

ln(inv x
−1):

ln(inv y
−1):

P(z) ≈ ln(1 + z):

sum:

ε <
(
|e|+ 1 + 1 + P(z) · 2−55) · 2−117

J. Le Maire, F. de Dinechin and J.-M. Muller Computing correctly rounded logarithm with fixed-point operations 30

Rounding test

Simple technique: compute the two bounds of the interval,
and see if they round to the same mantissa

(two additions, a xor and a shift)

real numbers

For comparison, the proof of the floating-point-based rounding test
(invented by Ziv and used in CRLibm) is an 18-page paper that took 20
years to publish...

J. Le Maire, F. de Dinechin and J.-M. Muller Computing correctly rounded logarithm with fixed-point operations 31

Rounding test

Simple technique: compute the two bounds of the interval,
and see if they round to the same mantissa

(two additions, a xor and a shift)

real numbers

For comparison, the proof of the floating-point-based rounding test
(invented by Ziv and used in CRLibm) is an 18-page paper that took 20
years to publish...

J. Le Maire, F. de Dinechin and J.-M. Muller Computing correctly rounded logarithm with fixed-point operations 31

Rounding test

Simple technique: compute the two bounds of the interval,
and see if they round to the same mantissa

(two additions, a xor and a shift)

real numbers

For comparison, the proof of the floating-point-based rounding test
(invented by Ziv and used in CRLibm) is an 18-page paper that took 20
years to publish...

J. Le Maire, F. de Dinechin and J.-M. Muller Computing correctly rounded logarithm with fixed-point operations 31

Error evaluation and rounding test

/∗ Compute the maximal a b s o l u t e e r r o r (a l i g n e d wi th l o n g r e s)
I f r e s u l t ∗(1 +− maxRelErr) a r e not rounded to the same number , we need more p r e c i s i o n ∗/

u in t64_t maxAbsErr = 3 + abs (xe)
+ (HI (zp zpa r t) >> (POLYNOMIAL_PREC + IMPLICIT_ZEROS + 11 − 6 4)) ;

u in t64_t maxRelErr = (maxAbsErr >> (64 − u)) + 1 ;

i f (((mant i s s a + maxRelErr) ^ (mant i s s a − maxRelErr)) >> 11) {
r e t u r n l og_rn_accu ra t e (c s t p a r t , dz , xe ,

argReduc1 [r i] . l og_ lo , argReduc2 [s i] . l o g_ l o) ;
}

/∗ Assemble the computed r e s u l t ∗/
u in t64_t r e s u l t b i t s = ((u in t64_t) s i g n << 63)

+ ((u in t64_t) (exponent+1023) << 52)
+ (mant i s s a >> 12)
+ ((mant i s s a >> 11) & 1) ; /∗ round to n e a r e s t ∗/

r e t u r n (union { u in t64_t u ; double d ; }){ r e s u l t b i t s } . d ;

J. Le Maire, F. de Dinechin and J.-M. Muller Computing correctly rounded logarithm with fixed-point operations 32

Second step

Use 3 words instead of 2 for the precomputed log
Use a much more accurate polynomial:

with coefficients on 128 bits instead of 64
(but z is still only a 64-bit number)
and using a higher degree polynomial

J. Le Maire, F. de Dinechin and J.-M. Muller Computing correctly rounded logarithm with fixed-point operations 33

Outline

Introduction and context

The Table Maker’s dilemma

One algorithm, many variants

Results

Bonus: a floating-point in, fixed-point out variant

Conclusions

J. Le Maire, F. de Dinechin and J.-M. Muller Computing correctly rounded logarithm with fixed-point operations 34

A few Pareto points in the design space

Table size (bytes) degree 1st degree 2nd
39,936 3 5
12,288 3 6
4,032 4 7
2,240 4 8
2,016 4 9
900 5 10
594 6 12
298 7 14

J. Le Maire, F. de Dinechin and J.-M. Muller Computing correctly rounded logarithm with fixed-point operations 35

Implementation parameters
of correctly rounded implementations

glibc crlibm-td crlibm-de cr-FixP
degree pol. 1 3/8 6 7 4
degree pol. 2 20 12 14 7
tables size 13 Kb 8192 bytes 6144 bytes 4032 bytes
% accurate phase N/A 1.5 0.4 4.4

J. Le Maire, F. de Dinechin and J.-M. Muller Computing correctly rounded logarithm with fixed-point operations 36

Average and max runing time (in processor cycles)

Pentium timing
cycles MKL glibc crlibm cr-de cr-FixP
avg time 25 90 69 46 49
max time 25 11,554 642 410 79

Timing breakdown on two processors
cycles Core i5 Bostan
System glibc newlib

90 105
quick phase alone 42 94
accurate phase alone 74 181
both phases (avg time) 49 121
both phases (max time) 79 225

Slanted means: no correct rounding

J. Le Maire, F. de Dinechin and J.-M. Muller Computing correctly rounded logarithm with fixed-point operations 37

Conclusion of this experiment

Improvement in the range reduction thanks to a wider format
... leading to improvements in polynomial degree and table size
Improvement in the rounding test
Improvement in the worst-case evaluation time
Probability to launch 2nd step is high,

but this is acceptable since 2nd step is so cheap
A branchless correctly rounded variant that is better than the glibc

J. Le Maire, F. de Dinechin and J.-M. Muller Computing correctly rounded logarithm with fixed-point operations 38

Outline

Introduction and context

The Table Maker’s dilemma

One algorithm, many variants

Results

Bonus: a floating-point in, fixed-point out variant

Conclusions

J. Le Maire, F. de Dinechin and J.-M. Muller Computing correctly rounded logarithm with fixed-point operations 39

Motivation

TKF91 : DNA sequence alignment algorithm
dynamic programming algorithm:

alignment as a path within a 2D array.
borders of an array initialized with log-likelihoods
then array filled using recurrence formulae

that involve only max and + operations.
All current implementations of this algorithm use a floating-point array,
but

int64 + and max are 1-cycle, vectorizable, and exact operations;
absolute accuracy of initialization logs: up to 2−42 with FP log, 2−52

with FixP log.

J. Le Maire, F. de Dinechin and J.-M. Muller Computing correctly rounded logarithm with fixed-point operations 40

Floating-point in, fixed-point out

output: fixed-point, 12 bits integer part, 52 bit fractional part

integer part fraction
•

faithful: target absolute accuracy 2−52

output absolute table Core i5 Bostan
format accuracy size cycles cycles
Fix64 2−52 2304 24 66
Fix128 2−116 4032 60 179

double (libm) 2−42 90 105

Fix64 is the code of the first step only,
without the conversion to float.

tweak: poly degree 3 only for abs. accuracy 2−59

Fix128 is the code of the second step only, without the conversion to
float.

J. Le Maire, F. de Dinechin and J.-M. Muller Computing correctly rounded logarithm with fixed-point operations 41

Only partial experiments

Improvement in accuracy measured
No noticeable improvement in performance

J. Le Maire, F. de Dinechin and J.-M. Muller Computing correctly rounded logarithm with fixed-point operations 42

Outline

Introduction and context

The Table Maker’s dilemma

One algorithm, many variants

Results

Bonus: a floating-point in, fixed-point out variant

Conclusions

J. Le Maire, F. de Dinechin and J.-M. Muller Computing correctly rounded logarithm with fixed-point operations 43

Conclusion

Competitive against state-of-the-art
2nd step faster than other implementations
Possible to do only the second step
Better argument reduction

Limitations:

Less portable than floating-point
No support for vectorization
Minimize latency, not throughput

J. Le Maire, F. de Dinechin and J.-M. Muller Computing correctly rounded logarithm with fixed-point operations 44

Conclusion

Competitive against state-of-the-art
2nd step faster than other implementations
Possible to do only the second step
Better argument reduction

Limitations:
Less portable than floating-point
No support for vectorization

Minimize latency, not throughput

J. Le Maire, F. de Dinechin and J.-M. Muller Computing correctly rounded logarithm with fixed-point operations 44

Conclusion

Competitive against state-of-the-art
2nd step faster than other implementations
Possible to do only the second step
Better argument reduction

Limitations:
Less portable than floating-point
No support for vectorization
Minimize latency, not throughput

J. Le Maire, F. de Dinechin and J.-M. Muller Computing correctly rounded logarithm with fixed-point operations 44

Future work

Going further with the logarithm
Computing the worst-cases for absolute precision
Finishing the Gappa proof (solution reconstruction)
Trying variant without the cancellations
Implementing the log in Metalibm
Comparing with the log already in Metalibm, or on other platforms

Going further with the fixed-point arithmetic
Having a log returning a fixed-point result (be it on two words)
Implementing other functions with fixed-point (sinpi, cospi)

J. Le Maire, F. de Dinechin and J.-M. Muller Computing correctly rounded logarithm with fixed-point operations 45

Future work

Going further with the logarithm
Computing the worst-cases for absolute precision
Finishing the Gappa proof (solution reconstruction)
Trying variant without the cancellations
Implementing the log in Metalibm
Comparing with the log already in Metalibm, or on other platforms

Going further with the fixed-point arithmetic
Having a log returning a fixed-point result (be it on two words)

Implementing other functions with fixed-point (sinpi, cospi)

J. Le Maire, F. de Dinechin and J.-M. Muller Computing correctly rounded logarithm with fixed-point operations 45

Future work

Going further with the logarithm
Computing the worst-cases for absolute precision
Finishing the Gappa proof (solution reconstruction)
Trying variant without the cancellations
Implementing the log in Metalibm
Comparing with the log already in Metalibm, or on other platforms

Going further with the fixed-point arithmetic
Having a log returning a fixed-point result (be it on two words)
Implementing other functions with fixed-point (sinpi, cospi)

J. Le Maire, F. de Dinechin and J.-M. Muller Computing correctly rounded logarithm with fixed-point operations 45

Thanks for your attention

Any question ?

J. Le Maire, F. de Dinechin and J.-M. Muller Computing correctly rounded logarithm with fixed-point operations 46

Reconstructing the solution

11 0 -53 -117-11

e · ln(2):

ln(inv x
−1):

ln(inv y
−1):

P(z) ≈ ln(1 + z):

sum:

1 floating-point fraction1 floating-point fraction1 floating-point fraction−1 floating-point fraction1 floating-point fraction

J. Le Maire, F. de Dinechin and J.-M. Muller Computing correctly rounded logarithm with fixed-point operations 47

Reconstructing the solution

11 0 -53 -117-11

e · ln(2):

ln(inv x
−1):

ln(inv y
−1):

P(z) ≈ ln(1 + z):

sum: 1 floating-point fraction

1 floating-point fraction1 floating-point fraction−1 floating-point fraction1 floating-point fraction

J. Le Maire, F. de Dinechin and J.-M. Muller Computing correctly rounded logarithm with fixed-point operations 47

Reconstructing the solution

11 0 -53 -117-11

e · ln(2):

ln(inv x
−1):

ln(inv y
−1):

P(z) ≈ ln(1 + z):

sum:

1 floating-point fraction

1 floating-point fraction

1 floating-point fraction−1 floating-point fraction1 floating-point fraction

J. Le Maire, F. de Dinechin and J.-M. Muller Computing correctly rounded logarithm with fixed-point operations 47

Reconstructing the solution

11 0 -53 -117-11

e · ln(2):

ln(inv x
−1):

ln(inv y
−1):

P(z) ≈ ln(1 + z):

sum:

1 floating-point fraction1 floating-point fraction

1 floating-point fraction

−1 floating-point fraction1 floating-point fraction

J. Le Maire, F. de Dinechin and J.-M. Muller Computing correctly rounded logarithm with fixed-point operations 47

Reconstructing the solution

11 0 -53 -117-11

e · ln(2):

ln(inv x
−1):

ln(inv y
−1):

P(z) ≈ ln(1 + z):

sum:

1 floating-point fraction1 floating-point fraction1 floating-point fraction

−1 floating-point fraction

1 floating-point fraction

J. Le Maire, F. de Dinechin and J.-M. Muller Computing correctly rounded logarithm with fixed-point operations 47

Reconstructing the solution

11 0 -53 -117-11

e · ln(2):

ln(inv x
−1):

ln(inv y
−1):

P(z) ≈ ln(1 + z):

sum:

1 floating-point fraction1 floating-point fraction1 floating-point fraction−1 floating-point fraction

1 floating-point fraction

J. Le Maire, F. de Dinechin and J.-M. Muller Computing correctly rounded logarithm with fixed-point operations 47

Example of code 2

/∗ X = 2^ xe ∗ (x b i t s /2^52) ∗/
xe −= 1023 ;
x b i t s = (x b i t s & 0xFFFFFFFFFFFFFull) + (UINT64_C(1) << 52) ;

/∗ X = 2^ xe ∗ (1/R) ∗ Y,
wi th Y = y /2^(52 + ARG_REDUC_1_SIZE)
and 1/R = argReduc1 [r i] . v a l /2^ARG_REDUC_1_SIZE ∗/

u in t8_t r i = (x b i t s >> (52 − ARG_REDUC_1_PREC)) − (1 u << ARG_REDUC_1_PREC) ;
u in t64_t y = ARG_REDUC_1_GETVALUE(r i) ∗ x b i t s ;

/∗ Y = (1/S) ∗ (1 + dZ) ,
w i th dZ = dz /2^(52 + ARG_REDUC_1_SIZE + ARG_REDUC_2_SIZE)
and 1/S = argReduc2 [s i] . v a l /2^ARG_REDUC_2_SIZE ∗/

u in t8_t s i = (y >> (52 + ARG_REDUC_1_SIZE − ARG_REDUC_2_PREC)) − (1 u << ARG_REDUC_2_PREC) ;
u in t64_t dz = ARG_REDUC_2_GETVALUE(s i) ∗ y ; // the i n t e g e r p a r t o f the f i x e d−p o i n t i s removed by o v e r f l o w

/∗ Compute p a r t o f the r e s u l t t h a t don ’ t depend on Z (xe∗ l o g (2) + l o g (1/ Ri) + l o g (1/ S i)) ∗/
u in t128_t c s t p a r t = f u l l i m u l (xe , log2fw_mid)

+ UINT128 ((i n t64_t) xe ∗ log2fw_high , 0) // dont need a f u l l mul he r e
+ UINT128 (argReduc1 [r i] . l og_h i , argReduc1 [r i] . log_mid)
+ UINT128 (argReduc2 [s i] . l og_h i , argReduc2 [s i] . log_mid) ;

/∗ Po lynomia l a p p r o x i m a t i on o f l o g (1+Z)/Z ~= P(Z) , and e v a l u a t e Z∗P(Z) ∗/
u in t64_t p = UINT64_C(0 x f f f f f f f f f f f f f f c 4)

−(h ighmul (dz ,
UINT64_C(0 x 7 f f f f f f f f f 0 9 1 8 9 5)
−(h ighmul (dz ,

UINT64_C(0 x55555509230fb34c)
−(h ighmul (dz , UINT64_C(0 x3 f f 8 f 2 ad563 f 0 e 19))>>IMPLICIT_ZEROS)

)>>IMPLICIT_ZEROS)
)>>IMPLICIT_ZEROS) ;

u in t128_t zp zpa r t = f u l l m u l (dz , p) ;

J. Le Maire, F. de Dinechin and J.-M. Muller Computing correctly rounded logarithm with fixed-point operations 48

Example of code 3

/∗ Assemble the two pa r t s , compute the s i gn , mant i s s a and exponent ∗/
u in t128_t l o n g r e s = c s t p a r t + (zp zpa r t >> (11 + IMPLICIT_ZEROS)) ;
u in t64_t s i g n = − (HI (l o n g r e s) >> 63) ; // s i g n i s 0 i f r e s u l t > 0 , and ~0 o t h e r w i s e
// i f s i g n != 0 , t h i s i s l o n g r e s = ~ l o n g r e s : i t approx imate the a b s o l u t e v a l u e (−a = ~a + 1)
// to a v o i d the approx imat ion , do : l o n g r e s = ((i n t 64_t) s i g n + l o n g r e s) ^ UINT128 (s i gn , s i g n) ;
l o n g r e s ^= UINT128 (s i gn , s i g n) ;

i n t u = c l z 6 4 (HI (l o n g r e s)) + 1 ;
i n t exponent = 11 − u ;
u in t64_t mant i s s a = HI (l o n g r e s << u) ;

/∗ Compute the maximal a b s o l u t e e r r o r (a l i g n e d wi th l o n g r e s)
I f r e s u l t ∗(1 +− maxRelErr) a r e not rounded to the same number , we need more p r e c i s i o n ∗/

u in t64_t maxAbsErr = 3 + abs (xe) + (HI (zp zpa r t) >> (POLYNOMIAL_PREC + IMPLICIT_ZEROS + 11 − 6 4)) ;
u in t64_t maxRelErr = (maxAbsErr >> (64 − u)) + 1 ;
i f (((mant i s s a + maxRelErr) ^ (mant i s s a − maxRelErr)) >> 11) {

r e t u r n l og_rn_accu ra t e (c s t p a r t , dz , xe , argReduc1 [r i] . l og_ lo , argReduc2 [s i] . l o g_ l o) ;
}

/∗ Assemble the computed r e s u l t ∗/
u in t64_t r e s u l t b i t s = ((u in t64_t) s i g n << 63)

+ ((u in t64_t) (exponent+1023) << 52)
+ (mant i s s a >> 12)
+ ((mant i s s a >> 11) & 1) ; /∗ round to n e a r e s t ∗/

r e t u r n (union { u in t64_t u ; double d ; }){ r e s u l t b i t s } . d ;

J. Le Maire, F. de Dinechin and J.-M. Muller Computing correctly rounded logarithm with fixed-point operations 49

	Introduction and context
	The Table Maker's dilemma
	One algorithm, many variants
	Results
	Bonus: a floating-point in, fixed-point out variant
	Conclusions
	Appendix

