Towards reliable implementation of Digital Filters in Fixed-Point arithmetic

Anastasia Volkova, Thibault Hilaire, Christoph Lauter

RAIM 2016
June 30, 2016

Cirs

Context: digital filters

Context: digital filters

On the one hand

- LTI filter with Infinite Impulse Response
- Its transfer function:

$$
H(z)=\frac{\sum_{i=0}^{n} b_{i} z^{-i}}{1+\sum_{i=1}^{n} a_{i} z^{-i}}
$$

Context: digital filters

On the one hand

- LTI filter with Infinite Impulse Response
- Its transfer function:

On the other hand

- Hardware or Software target
- Implementation in

Fixed-Point Arithmetic

$$
H(z)=\frac{\sum_{i=0}^{n} b_{i} z^{-i}}{1+\sum_{i=1}^{n} a_{i} z^{-i}}
$$

LTI filters

Let $\mathcal{H}:=(\boldsymbol{A}, \boldsymbol{B}, \boldsymbol{C}, \boldsymbol{D})$ be a LTI filter:

$$
\mathcal{H}\left\{\begin{aligned}
\boldsymbol{x}(k+1) & =\boldsymbol{A} \boldsymbol{x}(k)+\boldsymbol{B} \boldsymbol{u}(k) \\
\boldsymbol{y}(k) & =\boldsymbol{C} \boldsymbol{x}(k)+\boldsymbol{D} \boldsymbol{u}(k)
\end{aligned}\right.
$$

The filter \mathcal{H} is considered Bounded Input Bounded Output stable iif

$$
\rho(\boldsymbol{A})<1
$$

The input $\boldsymbol{u}(k)$ is considered bounded by $\overline{\boldsymbol{u}}$.

Two's complement Fixed-Point arithmetic

$$
y=-2^{m} y_{m}+\sum_{i=\ell}^{m-1} 2^{i} y_{i}
$$

- Wordlength: w
- Most Significant Bit position: m
- Least Significant Bit position: $\ell:=m-w+1$

Two's complement Fixed-Point arithmetic

$$
y=-2^{m} y_{m}+\sum_{i=\ell}^{m-1} 2^{i} y_{i}
$$

- $y(k) \in \mathbb{R}$
- wordlength w bits
- minimal Fixed-Point Format (FPF) is the least m :

$$
\forall k, \quad y(k) \in\left[-2^{m} ; 2^{m}-2^{m-w+1}\right]
$$

Fixed-Point IIR filter implementation using Matlab ${ }^{\circledR}$

Fixed-Point implementation in practice: simulation using Matlab/Simulink ${ }^{1}$ tools:

Fixed-Point IIR filter implementation using Matlab ${ }^{\circledR}$

Fixed-Point implementation in practice: simulation using Matlab/Simulink ${ }^{1}$ tools:

1) random system simulation

Fixed-Point IIR filter implementation using Matlab ${ }^{\circledR}$

Fixed-Point implementation in practice: simulation using Matlab/Simulink ${ }^{1}$ tools:

1) random system simulation
2) deduce the magnitudes

Fixed-Point IIR filter implementation using Matlab ${ }^{\circledR}$

Fixed-Point implementation in practice: simulation using Matlab/Simulink ${ }^{1}$ tools:

1) random system simulation
2) deduce the magnitudes
3) set some wordlength

Fixed-Point IIR filter implementation using Matlab ${ }^{\circledR}$

Fixed-Point implementation in practice: simulation using Matlab/Simulink ${ }^{1}$ tools:

1) random system simulation
2) deduce the magnitudes
3) set some wordlength
4) compute the Fixed-Point formats
[^0]
Fixed-Point IIR filter implementation using Matlab ${ }^{\circledR}$

Fixed-Point implementation in practice: simulation using Matlab/Simulink ${ }^{1}$ tools:

1) random system simulation
2) deduce the magnitudes
3) set some wordlength
4) compute the Fixed-Point formats
5) compare to reference filter
[^1]
Fixed-Point IIR filter implementation using Matlab ${ }^{\circledR}$

Fixed-Point implementation in practice: simulation using Matlab/Simulink ${ }^{1}$ tools:

1) random system simulation
2) deduce the magnitudes
3) set some wordlength
4) compute the Fixed-Point formats
5) compare to reference filter
6) if not convinced, increase the wordlength and return to Step 4
[^2]
Fixed-Point IIR filter implementation using Matlab ${ }^{\circledR}$

Fixed-Point implementation in practice: simulation using Matlab/Simulink ${ }^{1}$ tools:

1) random system simulation
2) deduce the magnitudes
3) set some wordlength
4) compute the Fixed-Point formats
5) compare to reference filter
6) if not convinced, increase the wordlength and return to Step 4

Unsatisfactory process!

Non-exhaustive simulations, using a floating-point simulation as reference \rightarrow no guarantees on the implementation

[^3]
Example using Matlab

A random $5^{\text {th }}$ order Butterworth: 5 states, 1 input, 1 output.

- $\bar{u}=1$
- $\rho(\boldsymbol{A})=1-1.44 \times 10^{-4}$

Example using Matlab

A random $5^{\text {th }}$ order Butterworth: 5 states, 1 input, 1 output.

- $\bar{u}=1$
- $\rho(\boldsymbol{A})=1-1.44 \times 10^{-4}$

Fixed-Point implementation:

- Simulating for $k=0, \ldots, 1000$
- 1000 random input sequences
- $\bar{y}_{\text {sim }}=5.72$

Example using Matlab

A random $5^{\text {th }}$ order Butterworth: 5 states, 1 input, 1 output.

- $\bar{u}=1$
- $\rho(\boldsymbol{A})=1-1.44 \times 10^{-4}$

Fixed-Point implementation:

- Simulating for $k=0, \ldots, 1000$
- 1000 random input sequences
- $\bar{y}_{\text {sim }}=5.72$
\triangle Simulation is not exhaustive

Simulation-based approach is not rigorous. What to do?

Our approach: reliable Fixed-Point implementation

Input:

- $\mathcal{H}=(\boldsymbol{A}, \boldsymbol{B}, \boldsymbol{C}, \boldsymbol{D})$
- bound $\overline{\boldsymbol{u}}(k)$ on the input interval
- wordlength constraints

Determine rigorously the Fixed-Point Formats s.t.

- the least MSBs
- no overflows
\rightsquigarrow pay attention to computational errors

Our approach: reliable Fixed-Point implementation

Input:

- $\mathcal{H}=(\boldsymbol{A}, \boldsymbol{B}, \boldsymbol{C}, \boldsymbol{D})$
- bound $\overline{\boldsymbol{u}}(k)$ on the input interval
- wordlength constraints

Determine rigorously the Fixed-Point Formats s.t.

- the least MSBs
- no overflows
\rightsquigarrow pay attention to computational errors

Our approach:

1) determine analytically the output interval of all variables
2) analyze propagation of the error in filter implementation and determine the Fixed-point formats

Deducing the output interval ${ }^{2}$

[^4] Precision", ARITH22, 2015

Basic brick: the Worst-Case Peak Gain theorem

Input $\boldsymbol{u}(k)$

$$
\text { Output } \boldsymbol{y}(k)
$$

Basic brick: the Worst-Case Peak Gain theorem

Example (continued)

Our random $5^{\text {th }}$ order Butterworth: 5 states, 1 input, 1 output.

- $\bar{u}=1$
- $\rho(\boldsymbol{A})=1-1.44 \times 10^{-4}$

Naive WCPG computation

- sum over 1000 terms
- $\bar{y}_{\text {WCPG }}=55.91\left(\bar{y}_{\text {sim }}=5.72\right)$

Example (continued)

Our random $5^{\text {th }}$ order Butterworth: 5 states, 1 input, 1 output.

- $\bar{u}=1$
- $\rho(\boldsymbol{A})=1-1.44 \times 10^{-4}$

Naive WCPG computation

- sum over 1000 terms
- $\bar{y}_{\text {WCPG }}=55.91\left(\bar{y}_{\text {sim }}=5.72\right)$

Example (continued)

Our random $5^{\text {th }}$ order Butterworth: 5 states, 1 input, 1 output.

- $\bar{u}=1$
- $\rho(\boldsymbol{A})=1-1.44 \times 10^{-4}$

Naive WCPG computation

- sum over 1000 terms
- $\bar{y}_{\text {WCPG }}=55.91\left(\bar{y}_{\text {sim }}=5.72\right)$
\triangle Still not reliable. Why?
\rightsquigarrow not enough terms for the WCPG

Example (continued)

Our random $5^{\text {th }}$ order Butterworth: 5 states, 1 input, 1 output.

- $\bar{u}=1$
- $\rho(\boldsymbol{A})=1-1.44 \times 10^{-4}$

Naive WCPG computation

- sum over 1000 terms
- $\bar{y}_{\text {WCPG }}=55.91\left(\bar{y}_{\text {sim }}=5.72\right)$
\triangle Still not reliable. Why?
\rightsquigarrow not enough terms for the WCPG

How to compute the WCPG matrix reliably?

Computing the Worst-Case Peak Gain

Problem: compute the Worst-Case Peak Gain with arbitrary precision.

$$
\langle\langle\mathcal{H}\rangle\rangle=|\boldsymbol{D}|+\sum_{k=0}^{\infty}\left|\boldsymbol{C A}^{k} \boldsymbol{B}\right|
$$

- Deduce reliable lower bound on truncation order
- Once the sum is truncated, evaluate it in multiple precision

Truncation

$$
\sum_{k=0}^{\infty}\left|\boldsymbol{C A}^{k} \boldsymbol{B}\right| \quad \longrightarrow \sum_{k=0}^{N}\left|\boldsymbol{C A}^{k} \boldsymbol{B}\right|
$$

Truncation

$$
\left|\sum_{k=0}^{\infty}\right| \boldsymbol{C A}^{k} \boldsymbol{B}\left|\quad-\quad \sum_{k=0}^{N}\right| \boldsymbol{C A}^{k} \boldsymbol{B}| | \leq \varepsilon_{1}
$$

Compute an approximate lower bound on truncation order N such that the truncation error is smaller than ε_{1}.

Lower bound on truncation order N

$$
N \geq\left\lceil\frac{\log \frac{\varepsilon_{1}}{\|\boldsymbol{M}\|_{\text {min }}}}{\log \rho(\boldsymbol{A})}\right\rceil, \quad \text { with } \boldsymbol{M}:=\sum_{l=1}^{n} \frac{\left|\boldsymbol{R}_{l}\right|}{1-\left|\boldsymbol{\lambda}_{l}\right|} \frac{\left|\boldsymbol{\lambda}_{l}\right|}{\rho(\boldsymbol{A})}
$$

where
$\boldsymbol{\lambda}$ - eigenvalues of matrix \boldsymbol{A}
$\boldsymbol{R}_{I}-I^{\text {th }}$ residue matrix computed out of $\boldsymbol{C}, \boldsymbol{B}, \boldsymbol{\lambda}$

Powering

$$
\sum_{k=0}^{N}\left|\boldsymbol{C} \boldsymbol{A}^{k} \boldsymbol{B}\right|
$$

Powering

$$
\sum_{k=0}^{N}\left|\boldsymbol{C} \boldsymbol{A}^{k} \boldsymbol{B}\right|
$$

cancellation

Powering

$$
\sum_{k=0}^{N}\left|\boldsymbol{C} \boldsymbol{A}^{k} \boldsymbol{B}\right|
$$

Powering

Powering

$$
\sum_{k=0}^{N}\left|C A^{k} B\right|
$$

cancellation
less cancellation
$\boldsymbol{A}=\boldsymbol{X E X} \boldsymbol{X}^{-1}$

$$
\boldsymbol{V} \approx \boldsymbol{X} \text { and } \boldsymbol{T} \approx \boldsymbol{E}
$$

Powering

$$
\sum_{k=0}^{N}\left|\boldsymbol{C A}^{k} \boldsymbol{B}\right|
$$

Powering

$$
\left|\sum_{k=0}^{N}\right| \boldsymbol{C A}^{k} \boldsymbol{B}\left|\quad-\quad \sum_{k=0}^{N}\right| \boldsymbol{C V} \boldsymbol{T}^{k} \boldsymbol{V}^{-1} \boldsymbol{B}| | \leq \varepsilon_{2}
$$

Given matrix \boldsymbol{V} compute \boldsymbol{T} such that the error of substitution of the product $\boldsymbol{V} \boldsymbol{T}^{k} \boldsymbol{V}^{-1}$ instead of \boldsymbol{A}^{k} is less than ε_{2}.

Further steps

$$
\left|\sum_{k=0}^{N}\right| \boldsymbol{C} \boldsymbol{A}^{k} \boldsymbol{B}\left|\quad-\quad \sum_{k=0}^{N}\right| \boldsymbol{C} \boldsymbol{V} \boldsymbol{T}^{k} \boldsymbol{V}^{-1} \boldsymbol{B}| | \leq \varepsilon_{2}
$$

Apply the same approach for the other steps:

$$
\begin{gathered}
\left|\sum_{k=0}^{N}\right| \boldsymbol{C V} \boldsymbol{T}^{k} \boldsymbol{V}^{-1} \boldsymbol{B}\left|-\sum_{k=0}^{N}\right| \boldsymbol{C}^{\prime} \boldsymbol{T}^{k} \boldsymbol{B}^{\prime}| | \leq \varepsilon_{3} \\
\left|\sum_{k=0}^{N}\right| \boldsymbol{C}^{\prime} \boldsymbol{T}^{k} \boldsymbol{B}^{\prime}\left|-\sum_{k=0}^{N}\right| \boldsymbol{C}^{\prime} \boldsymbol{P}_{k} \boldsymbol{B}^{\prime}| | \leq \varepsilon_{4} \\
\left|\sum_{k=0}^{N}\right| \boldsymbol{C}^{\prime} \boldsymbol{P}_{k} \boldsymbol{B}^{\prime}\left|-\sum_{k=0}^{N}\right| \boldsymbol{L}_{k}| | \leq \varepsilon_{5} \\
\left|\sum_{k=0}^{N}\right| \boldsymbol{L}_{k}\left|-\quad S_{N}\right| \leq \varepsilon_{6}
\end{gathered}
$$

Further steps

$$
\left|\sum_{k=0}^{N}\right| \boldsymbol{C} \boldsymbol{A}^{k} \boldsymbol{B}\left|\quad-\quad \sum_{k=0}^{N}\right| \boldsymbol{C} \boldsymbol{V} \boldsymbol{T}^{k} \boldsymbol{V}^{-1} \boldsymbol{B}| | \leq \varepsilon_{2}
$$

Apply the same approach for the other steps:

$$
\begin{gathered}
\left|\sum_{k=0}^{N}\right| \boldsymbol{C V} \boldsymbol{T}^{k} \boldsymbol{V}^{-1} \boldsymbol{B}\left|-\sum_{k=0}^{N}\right| \boldsymbol{C}^{\prime} \boldsymbol{T}^{k} \boldsymbol{B}^{\prime}| | \leq \varepsilon_{3} \\
\left|\sum_{k=0}^{N}\right| \boldsymbol{C}^{\prime} \boldsymbol{T}^{k} \boldsymbol{B}^{\prime}\left|-\sum_{k=0}^{N}\right| \boldsymbol{C}^{\prime} \boldsymbol{P}_{k} \boldsymbol{B}^{\prime}| | \leq \varepsilon_{4} \\
\left|\sum_{k=0}^{N}\right| \boldsymbol{C}^{\prime} \boldsymbol{P}_{k} \boldsymbol{B}^{\prime}\left|-\sum_{k=0}^{N}\right| \boldsymbol{L}_{k}| | \leq \varepsilon_{5} \\
\left|\sum_{k=0}^{N}\right| \boldsymbol{L}_{k}\left|-\quad S_{N}\right| \leq \varepsilon_{6}
\end{gathered}
$$

We can determine the output interval of a filter with arbitrary precision.

Example (continued)

Our random $5^{\text {th }}$ order Butterworth:
5 states, 1 input, 1 output.

- $\bar{u}=1$
- $\rho(\boldsymbol{A})=1-1.44 \times 10^{-4}$

Example (continued)

Our random $5^{\text {th }}$ order Butterworth:
5 states, 1 input, 1 output.

- $\bar{u}=1$
- $\rho(\boldsymbol{A})=1-1.44 \times 10^{-4}$

We computed WCPG with $\varepsilon=2^{-64}$:

Approach	N	\bar{y}
Simulation	-	5.72
Naive WCPG	$\mathbf{1 0 0 0}$	55.91
Our WCPG	$\mathbf{3 5 2 ~ 1 5 8}$	$\mathbf{7 7 2 . 0 4}$

Figure: Output $y(k)$ reaches a ε-neighborhood of \bar{y}.

Determining the Fixed-Point Formats ${ }^{3}$

${ }^{3}$ A.V. et al., "Determining Fixed-Point Formats for a Digital Filter Implementation using the Worst-Case Peak Gain Measure", Asilomar 49, 2015

Determining the Fixed-Point Formats

$$
\mathcal{H}\left\{\begin{aligned}
\boldsymbol{x}(k+1) & =\boldsymbol{A} \boldsymbol{x}(k)+\boldsymbol{B} \boldsymbol{u}(k) \\
\boldsymbol{y}(k) & =\boldsymbol{C} \boldsymbol{x}(k)+\boldsymbol{D} \boldsymbol{u}(k)
\end{aligned}\right.
$$

We know that if $\forall k,\left|\boldsymbol{u}_{i}(k)\right| \leq \overline{\boldsymbol{u}}_{i}$, then

$$
\forall k, \quad\left|\boldsymbol{y}_{i}(k)\right| \leq(\langle\langle\mathcal{H}\rangle\rangle \overline{\boldsymbol{u}})_{i}
$$

Determining the Fixed-Point Formats

$$
\mathcal{H}\left\{\begin{aligned}
\boldsymbol{x}(k+1) & =\boldsymbol{A} \boldsymbol{x}(k)+\boldsymbol{B} \boldsymbol{u}(k) \\
\boldsymbol{y}(k) & =\boldsymbol{C} \boldsymbol{x}(k)+\boldsymbol{D} \boldsymbol{u}(k)
\end{aligned}\right.
$$

We know that if $\forall k,\left|\boldsymbol{u}_{i}(k)\right| \leq \overline{\boldsymbol{u}}_{i}$, then

$$
\forall k, \quad\left|\boldsymbol{y}_{i}(k)\right| \leq(\langle\langle\mathcal{H}\rangle\rangle \overline{\boldsymbol{u}})_{i} .
$$

We need to find the least \boldsymbol{m}_{y} such that

$$
\forall k, \quad\left|\boldsymbol{y}_{i}(k)\right| \leq 2^{\boldsymbol{m}_{y_{i}}}-2^{\boldsymbol{m}_{y_{i}}-\boldsymbol{w}_{y_{i}}+1} .
$$

Determining the Fixed-Point Formats

$$
\mathcal{H}\left\{\begin{aligned}
\boldsymbol{x}(k+1) & =\boldsymbol{A} \boldsymbol{x}(k)+\boldsymbol{B} \boldsymbol{u}(k) \\
\boldsymbol{y}(k) & =\boldsymbol{C} \boldsymbol{x}(k)+\boldsymbol{D} \boldsymbol{u}(k)
\end{aligned}\right.
$$

We know that if $\forall k,\left|\boldsymbol{u}_{i}(k)\right| \leq \overline{\boldsymbol{u}}_{i}$, then

$$
\forall k, \quad\left|\boldsymbol{y}_{i}(k)\right| \leq(\langle\langle\mathcal{H}\rangle\rangle \overline{\boldsymbol{u}})_{i} .
$$

We need to find the least \boldsymbol{m}_{y} such that

$$
\forall k, \quad\left|\boldsymbol{y}_{i}(k)\right| \leq 2^{\boldsymbol{m}_{y_{i}}}-2^{\boldsymbol{m}_{y_{i}}-\boldsymbol{w}_{y_{i}}+1}
$$

It easy to show that \boldsymbol{m}_{y} can be computed with

$$
\boldsymbol{m}_{y_{i}}=\left\lceil\log _{2}(\langle\langle\mathcal{H}\rangle\rangle \overline{\boldsymbol{u}})_{i}-\log _{2}\left(1-2^{1-\boldsymbol{w}_{y_{i}}}\right)\right\rceil .
$$

Determining the Fixed-Point Formats

$$
\mathcal{H}\left\{\begin{aligned}
\boldsymbol{x}(k+1) & =\boldsymbol{A} \boldsymbol{x}(k)+\boldsymbol{B} \boldsymbol{u}(k) \\
\boldsymbol{y}(k) & =\boldsymbol{C} \boldsymbol{x}(k)+\boldsymbol{D} \boldsymbol{u}(k)
\end{aligned}\right.
$$

We know that if $\forall k,\left|\boldsymbol{u}_{i}(k)\right| \leq \overline{\boldsymbol{u}}_{i}$, then

$$
\forall k, \quad\left|\boldsymbol{y}_{i}(k)\right| \leq(\langle\langle\mathcal{H}\rangle\rangle \overline{\boldsymbol{u}})_{i} .
$$

We need to find the least \boldsymbol{m}_{y} such that

$$
\forall k, \quad\left|\boldsymbol{y}_{i}(k)\right| \leq 2^{\boldsymbol{m}_{y_{i}}}-2^{\boldsymbol{m}_{y_{i}}-\boldsymbol{w}_{y_{i}}+1}
$$

It easy to show that \boldsymbol{m}_{y} can be computed with

$$
\boldsymbol{m}_{y_{i}}=\left\lceil\log _{2}(\langle\langle\mathcal{H}\rangle\rangle \overline{\boldsymbol{u}})_{i}-\log _{2}\left(1-2^{1-\boldsymbol{w}_{y_{i}}}\right)\right\rceil .
$$

Control the accuracy of the WCPG such that $0 \leq \widehat{\boldsymbol{m}}_{y_{i}}-\boldsymbol{m}_{y_{i}} \leq 1$

Taking the quantization errors into account

The exact filter \mathcal{H} is:

$$
\mathcal{H}\left\{\begin{array}{rlrl}
\boldsymbol{x}(k+1) & = & \boldsymbol{A} \boldsymbol{x}(k)+\boldsymbol{B} \boldsymbol{u}(k) \\
\boldsymbol{y}(k) & = & & \boldsymbol{X} \boldsymbol{x}(k)+\boldsymbol{D} \boldsymbol{u}(k)
\end{array}\right.
$$

Taking the quantization errors into account

The actually implemented filter \mathcal{H}^{\diamond} is:

$$
\mathcal{H}^{\diamond\left\{\left\{\begin{array}{rl}
\boldsymbol{x}^{\diamond}(k+1) & =\diamond_{m_{x}}\left(\boldsymbol{A} \boldsymbol{x}^{\diamond}(k)+\boldsymbol{B} \boldsymbol{u}(k)\right) \\
\boldsymbol{y}^{\diamond}(k) & =\diamond_{m_{y}}\left(\boldsymbol{C} \boldsymbol{x}^{\diamond}(k)+\boldsymbol{D} \boldsymbol{u}(k)\right)
\end{array} .\left\{\begin{array}{l}
\text { (}
\end{array}\right)\right.\right.}
$$

where \diamond_{m} is some operator ensuring faithful rounding:

$$
\left|\nabla_{m}(x)-x\right| \leq 2^{m-w+1}
$$

Taking the quantization errors into account

The actually implemented filter \mathcal{H}^{\diamond} is:

$$
\mathcal{H}^{\diamond}\left\{\begin{aligned}
\boldsymbol{x}^{\diamond}(k+1) & =\diamond_{m_{x}}\left(\boldsymbol{A} \boldsymbol{x}^{\diamond}(k)+\boldsymbol{B} \boldsymbol{u}(k)\right)+\varepsilon_{x}(k) \\
\boldsymbol{y}^{\diamond}(k) & =\diamond_{m_{y}}\left(\boldsymbol{C} \boldsymbol{x}^{\diamond}(k)+\boldsymbol{D} \boldsymbol{u}(k)+\varepsilon_{y}(k)\right.
\end{aligned}\right.
$$

with

$$
\left|\varepsilon_{x}(k)\right| \leq 2^{\boldsymbol{m}_{x}-\boldsymbol{w}_{x}+1} \quad \text { and } \quad\left|\varepsilon_{y}(k)\right| \leq 2^{\boldsymbol{m}_{y}-\boldsymbol{w}_{y}+1}
$$

Taking the quantization errors into account

The actually implemented filter \mathcal{H}^{\diamond} is:

$$
\mathcal{H}^{\diamond}\left\{\begin{aligned}
\boldsymbol{x}^{\diamond}(k+1) & =\diamond_{m_{x}}\left(\boldsymbol{A} \boldsymbol{x}^{\diamond}(k)+\boldsymbol{B} \boldsymbol{u}(k)\right)+\varepsilon_{x}(k) \\
\boldsymbol{y}^{\diamond}(k) & =\diamond_{m_{y}}\left(\boldsymbol{C} \boldsymbol{x}^{\diamond}(k)+\boldsymbol{D} \boldsymbol{u}(k)+\varepsilon_{y}(k)\right.
\end{aligned}\right.
$$

with

$$
\left|\varepsilon_{x}(k)\right| \leq 2^{\boldsymbol{m}_{x}-\boldsymbol{w}_{x}+1} \quad \text { and } \quad\left|\varepsilon_{y}(k)\right| \leq 2^{\boldsymbol{m}_{y}-\boldsymbol{w}_{y}+1}
$$

Taking the quantization errors into account

The actually implemented filter \mathcal{H}^{\diamond} is:

$$
\mathcal{H}^{\diamond}\left\{\begin{aligned}
\boldsymbol{x}^{\diamond}(k+1) & =\diamond_{m_{x}}\left(\boldsymbol{A} \boldsymbol{x}^{\diamond}(k)+\boldsymbol{B} \boldsymbol{u}(k)\right)+\varepsilon_{x}(k) \\
\boldsymbol{y}^{\diamond}(k) & =\diamond_{m_{y}}\left(\boldsymbol{C} \boldsymbol{x}^{\diamond}(k)+\boldsymbol{D} \boldsymbol{u}(k)+\varepsilon_{y}(k)\right.
\end{aligned}\right.
$$

with

$$
\left|\varepsilon_{x}(k)\right| \leq 2^{\boldsymbol{m}_{x}-\boldsymbol{w}_{x}+1} \quad \text { and } \quad\left|\varepsilon_{y}(k)\right| \leq 2^{\boldsymbol{m}_{y}-\boldsymbol{w}_{y}+1}
$$

Algorithm

Algorithm

Algorithm

Step 1: Determine the initial guess MSBs \boldsymbol{m}_{y} for the exact filter \mathcal{H}

Algorithm

Step 1: Determine the initial guess MSBs \boldsymbol{m}_{y} for the exact filter \mathcal{H} Step 2: Compute the error-filter \mathcal{H}_{Δ}, induced by the format \boldsymbol{m}_{y} and deduce the MSBs $\boldsymbol{m}_{\zeta}^{\diamond}$

Algorithm

Step 1: Determine the initial guess MSBs \boldsymbol{m}_{y} for the exact filter \mathcal{H}
Step 2: Compute the error-filter \mathcal{H}_{Δ}, induced by the format \boldsymbol{m}_{y} and deduce the MSBs $\boldsymbol{m}_{\zeta}^{\diamond}$
Step 3: If $\boldsymbol{m}_{y_{i}}^{\diamond}==\boldsymbol{m}_{y_{i}}$ then return $\boldsymbol{m}_{y_{i}}^{\diamond}$ otherwise $\boldsymbol{m}_{y_{i}} \leftarrow \boldsymbol{m}_{y_{i}}+1$ and go to Step 2 .

Example (continued)

Our random $5^{\text {th }}$ order Butterworth:
5 states, 1 input, 1 output.

- $\bar{u}=1$
- $\rho(\boldsymbol{A})=1-1.44 \times 10^{-4}$
- wordlengths set to 7 bits

$$
\boldsymbol{x}_{1}(k) \quad \boldsymbol{x}_{2}(k) \quad \begin{array}{llll}
\text { states } & \boldsymbol{x}_{3}(k) & \boldsymbol{x}_{4}(k) & \boldsymbol{x}_{5}(k)
\end{array}
$$

Matlab	8	9	9	9	8	7
Our approach	11	12	12	12	11	11

Table: Resulting MSB positions

Conclusion and Perspectives

Conclusion

- Proposed a new completely rigorous approach for the Fixed-Point implementation of linear digital filters
- Provided reliable evaluation of the WCPG measure
- Applied the WCPG measure to determine the Fixed-Point Formats that guarantee no overflow

Perspectives:

- Solve the off-by-one problem for the MSBs
- Accuracy of the algorithms for the design of IIR filters
\rightsquigarrow develop approaches to take the quantization error into account
- Formalize proofs in a Formal Proof Checker

Thank you!

Off-by-one problem

$$
\begin{aligned}
& \widehat{\boldsymbol{m}}=\lceil\mathbf{m}\rceil \\
& \mathbf{m} \text { contains a power of } 2 .
\end{aligned}
$$

Off-by-one problem

$$
\begin{aligned}
& \widehat{\boldsymbol{m}}=\lceil\mathbf{m}\rceil \\
& \mathrm{m} \text { contains a power of } 2 .
\end{aligned}
$$

Problem: interval m contains a power of 2 . Technique: Ziv's strategy to reduce interval

Off-by-one problem

$$
\begin{aligned}
& \widehat{\boldsymbol{m}}=\lceil\mathbf{m}\rceil \\
& \mathrm{m} \text { contains a power of } 2 .
\end{aligned}
$$

Problem: interval m contains a power of 2 .
Technique: Ziv's strategy to reduce interval

Dilemma:

- propagation of computational errors or
- overestimation in linear filter decomposition?

Off-by-one problem

$$
\widehat{\boldsymbol{m}}=\lceil\mathrm{m}\rceil
$$

Problem: interval m contains a power of 2 .

Technique: Ziv's strategy to reduce interval

Dilemma:

- propagation of computational errors or
- overestimation in linear filter decomposition?

Possible approach:

- Assume the format $\widehat{\boldsymbol{m}}=p$
- Does there exist a reachable $\boldsymbol{x}^{\diamond}(k)$ s.t. $\boldsymbol{y}^{\diamond}(k)$ overflows ?

Off-by-one problem

$$
\begin{aligned}
& \widehat{\boldsymbol{m}}=\lceil\mathrm{m}\rceil \\
& \mathrm{m} \text { contains a power of } 2 .
\end{aligned}
$$

Problem: interval m contains a power of 2 .

Technique: Ziv's strategy to reduce interval

Dilemma:

- propagation of computational errors or
- overestimation in linear filter decomposition?

Possible approach:

- Assume the format $\widehat{\boldsymbol{m}}=p$
- Does there exist a reachable $\boldsymbol{x}^{\diamond}(k)$ s.t. $\boldsymbol{y}^{\diamond}(k)$ overflows ?

Technique: SMT? integer linear programming? LLL?

Context: implementation of LTI filters

- Transfer function generation
! Coefficient quantization
- Algorithm choice: State-space, Direct Form I, Direct Form II, ...
! Large variety of structures with no common quality criteria
- Software or Hardware implementation
! Constraints: power consumption, area, error, speed, etc.
! Computational errors due to finite-precision implementation

Filter-to-code generator

Figure: Automatic filter generator flow.
Stage 1: analytical filter realization representation (SIF)
Stage 2: filter quality measures
Stage 3: fixed-point algorithm (rigorous approach, computational errors are taken into account, no onverflows)
Stage 4: Fixed-Point Code Generator

Numerical example

Example:

- Random filter with 3 states, 1 input, 1 output
- $\bar{u}=5.125$, wordlengths set to 7 bits

	states		output
$\boldsymbol{x}_{1}(k)$	$\boldsymbol{x}_{2}(k)$	$\boldsymbol{x}_{3}(k)$	$\boldsymbol{y}(k)$

Step 1	6	7	5	6
Step 2	6	7	6	6
Step 3	6	7	6	6

Table: Evolution of the MSB positions

Numerical example

Figure: The exact and quantized outputs of the example. Quantized output does not pass over to the next binade.

Numerical example

Figure: The exact and quantized third state of the example.
Quantized state passes over to the next binade.

[^0]: ${ }^{1}$ http://www.mathworks.com

[^1]: ${ }^{1}$ http://www.mathworks.com

[^2]: ${ }^{1}$ http://www.mathworks.com

[^3]: ${ }^{1}$ http://www.mathworks.com

[^4]: ${ }^{2}$ A.V. et al., "Reliable Evaluation of the Worst-Case Peak Gain Matrix in Multiple

