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Context: digital filters

u(k) y(k)H

On the one hand
LTI filter with Infinite
Impulse Response
Its transfer function:

H(z) =

n∑
i=0

biz
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1 +
n∑

i=1
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On the other hand
Hardware or Software target
Implementation in
Fixed-Point Arithmetic
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LTI filters

Let H := (A,B,C ,D) be a LTI filter:

H
{

x(k + 1) = Ax(k) + Bu(k)
y(k) = Cx(k) + Du(k)

The filter H is considered Bounded Input Bounded Output stable iif

ρ(A) < 1

The input u(k) is considered bounded by ū.
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Two’s complement Fixed-Point arithmetic

m + 1 −`
s

w

−2m 20 2−12m−1 2`

y = −2mym +
m−1∑

i=`

2iyi

Wordlength: w
Most Significant Bit position: m
Least Significant Bit position: ` := m − w + 1

∀k , y(k) ∈ [−2m; 2m − 2m−w+1]
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wordlength w bits
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Fixed-Point IIR filter implementation using Matlab R©

Fixed-Point implementation in practice: simulation using Matlab/Simulink1

tools:

1) random system simulation
2) deduce the magnitudes
3) set some wordlength
4) compute the Fixed-Point formats
5) compare to reference filter
6) if not convinced, increase the wordlength and return to Step 4

Unsatisfactory process!
Non-exhaustive simulations, using a floating-point simulation as reference
→ no guarantees on the implementation

1http://www.mathworks.com
A. Volkova RAIM 2016 June 30, 2016 5 / 22
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Example using Matlab

A random 5th order Butterworth:
5 states, 1 input, 1 output.

ū = 1
ρ(A) = 1− 1.44× 10−4

Fixed-Point implementation:
Simulating for k = 0, . . . , 1000
1000 random input sequences
ȳsim = 5.72

B Simulation is not exhaustive

Simulation-based approach is not rigorous. What to do?
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Our approach: reliable Fixed-Point implementation

Input:
H = (A,B,C ,D)

bound ū(k) on the input interval
wordlength constraints

Determine rigorously the Fixed-Point Formats s.t.
the least MSBs
no overflows
 pay attention to computational errors

Our approach:
1) determine analytically the output interval of all variables
2) analyze propagation of the error in filter implementation and

determine the Fixed-point formats
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Deducing the output interval2

2A.V. et al., "Reliable Evaluation of the Worst-Case Peak Gain Matrix in Multiple
Precision", ARITH22, 2015
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Basic brick: the Worst-Case Peak Gain theorem

Time

A
m

p
li
tu

d
e

Output y(k)

H y(k)u(k)

amplification/attenuation
Time

A
m

p
li
tu

d
e 8k, |u(k)|  ū

Input u(k)
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Example (continued)

Our random 5th order Butterworth:
5 states, 1 input, 1 output.

ū = 1
ρ(A) = 1− 1.44× 10−4

Naive WCPG computation
sum over 1000 terms
ȳWCPG = 55.91

(
ȳsim = 5.72

)

B Still not reliable. Why?
 not enough terms for the WCPG
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How to compute the WCPG matrix reliably?
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Computing the Worst-Case Peak Gain

Problem: compute the Worst-Case Peak Gain with arbitrary precision.

〈〈H〉〉 = |D|+
∞∑

k=0

∣∣∣CAkB
∣∣∣

Deduce reliable lower bound on truncation order
Once the sum is truncated, evaluate it in multiple precision
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Truncation

∣∣∣∣∣

∞∑

k=0

∣∣CAkB
∣∣ −→

−

N∑

k=0

∣∣CAkB
∣∣

∣∣∣∣∣ ≤ ε1

Compute an approximate lower bound on truncation order N such that the
truncation error is smaller than ε1.

Lower bound on truncation order N

N ≥
⌈
log ε1
‖M‖min

log ρ(A)

⌉
, with M :=

n∑

l=1

|R l |
1− |λl |

|λl |
ρ(A)

where

λ− eigenvalues of matrix A

R l − l thresidue matrix computed out of C ,B,λ
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Powering

(

N∑

k=0

∣∣CAkB
∣∣

−→−
N∑

k=0

∣∣CVT kV−1B
∣∣(≤ ε2

× = cancellation

× = less cancellation

A = XEX−1 V ≈ X and T ≈ E

T ≈ V−1 × A× V

Ak ≈ V × T k × V−1
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Powering

∣∣∣∣∣
N∑

k=0

∣∣CAkB
∣∣ −

N∑

k=0

∣∣CVT kV−1B
∣∣
∣∣∣∣∣ ≤ ε2

Given matrix V compute T such that the error of substitution of the product
VT kV−1 instead of Ak is less than ε2.

We can determine the output interval of a filter with arbitrary precision.
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Further steps

∣∣∣∣∣
N∑

k=0

∣∣CAkB
∣∣ −

N∑

k=0

∣∣CVT kV−1B
∣∣
∣∣∣∣∣ ≤ ε2

Apply the same approach for the other steps:
∣∣∣∣

N∑
k=0

∣∣CVT kV−1B
∣∣−

N∑
k=0

∣∣C ′T kB ′
∣∣
∣∣∣∣ ≤ ε3

∣∣∣
∑N

k=0

∣∣C ′T kB ′
∣∣− ∑N

k=0 |C ′PkB ′|
∣∣∣ ≤ ε4

∣∣∣
∑N

k=0 |C ′PkB ′| −
∑N

k=0 |Lk |
∣∣∣ ≤ ε5

∣∣∣
∑N

k=0 |Lk | − SN

∣∣∣ ≤ ε6

We can determine the output interval of a filter with arbitrary precision.
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Example (continued)

Our random 5th order
Butterworth:
5 states, 1 input, 1 output.

ū = 1
ρ(A) = 1− 1.44× 10−4

We computed WCPG with ε = 2−64:

Approach N ȳ

Simulation - 5.72
Naive WCPG 1 000 55.91
Our WCPG 352 158 772.04

Figure: Output y(k) reaches a ε-neighborhood of ȳ .
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Determining the Fixed-Point Formats3

3A.V. et al., "Determining Fixed-Point Formats for a Digital Filter Implementation
using the Worst-Case Peak Gain Measure", Asilomar 49, 2015
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Determining the Fixed-Point Formats

H
{

x(k + 1) = Ax(k) + Bu(k)
y(k) = Cx(k) + Du(k)

We know that if ∀k, |u i (k)| ≤ ū i , then

∀k, |y i (k)| ≤ (〈〈H〉〉 ū)i .

We need to find the least my such that

∀k , |y i (k)| ≤ 2myi − 2myi
−w yi

+1.

It easy to show that my can be computed with

myi =
⌈
log2 (〈〈H〉〉 ū)i − log2

(
1− 21−w yi

)⌉
.

Control the accuracy of the WCPG such that 0 ≤ m̂yi −myi ≤ 1
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Taking the quantization errors into account

The exact filter H is:

H♦
{

x♦(k + 1) = ♦mx (Ax♦(k) + Bu(k)) + εx(k)
y

♦

(k) =

♦my (

Cx

♦

(k) + Du(k)

) + εy (k)

H

H�

y⌃(k)

u(k) y(k)

�(k)

✓
"x(k)
"y(k)

◆
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Algorithm

Step 1: Determine the initial guess MSBs my for the exact filter H
Step 2: Compute the error-filter H∆, induced by the format my and

deduce the MSBs m♦ζ
Step 3: If m♦yi == myi then return m♦yi

otherwise myi ← myi + 1 and go to Step 2.
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Example (continued)

Our random 5th order Butterworth:
5 states, 1 input, 1 output.

ū = 1
ρ(A) = 1− 1.44× 10−4

wordlengths set to 7 bits

states output
x1(k) x2(k) x3(k) x4(k) x5(k) y(k)

Matlab 8 9 9 9 8 7
Our approach 11 12 12 12 11 11

Table: Resulting MSB positions
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Conclusion and Perspectives

Conclusion
Proposed a new completely rigorous approach for the Fixed-Point
implementation of linear digital filters
Provided reliable evaluation of the WCPG measure
Applied the WCPG measure to determine the Fixed-Point Formats
that guarantee no overflow

Perspectives:
Solve the off-by-one problem for the MSBs
Accuracy of the algorithms for the design of IIR filters
 develop approaches to take the quantization error into account

Formalize proofs in a Formal Proof Checker
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Thank you!
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Off-by-one problem

m̂ = dme
Problem: interval m contains a power of 2.

Technique: Ziv’s strategy to reduce interval

2p 2p+1

Dilemma:
propagation of computational errors or
overestimation in linear filter decomposition?

Possible approach:
Assume the format m̂ = p

Does there exist a reachable x♦(k) s.t. y♦(k) overflows ?
Technique: SMT? integer linear programming? LLL?
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Context: implementation of LTI filters

0 1 0 1 1
1 1 1 0 1
0 0 1 1 0
1 0 0 1 1

Transfer function generation
! Coefficient quantization

Algorithm choice: State-space, Direct Form I, Direct Form II, . . .
! Large variety of structures with no common quality criteria

Software or Hardware implementation
! Constraints: power consumption, area, error, speed, etc.
! Computational errors due to finite-precision implementation
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Filter-to-code generator

H(z) SIF
Realization
quality

FxP
algorithm

Code
generation

structures measures wordlengths target

Figure: Automatic filter generator flow.

Stage 1: analytical filter realization representation (SIF)
Stage 2: filter quality measures
Stage 3: fixed-point algorithm (rigorous approach, computational
errors are taken into account, no onverflows)
Stage 4: Fixed-Point Code Generator
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Numerical example

Example:
Random filter with 3 states, 1 input, 1 output
ū = 5.125, wordlengths set to 7 bits

states output
x1(k) x2(k) x3(k) y(k)

Step 1 6 7 5 6
Step 2 6 7 6 6
Step 3 6 7 6 6

Table: Evolution of the MSB positions
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Numerical example

Time
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ȳ
y⌃(k)

y(k)

ȳ⌃

Figure: The exact and quantized outputs of the example.
Quantized output does not pass over to the next binade.

A. Volkova RAIM 2016 June 30, 2016 5 / 6



Numerical example
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Figure: The exact and quantized third state of the example.
Quantized state passes over to the next binade.
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