Towards reliable implementation of Digital Filters in Fixed-Point arithmetic

Anastasia Volkova, Thibault Hilaire, Christoph Lauter

RAIM 2016 June 30, 2016

Context: digital filters

Context: digital filters

On the one hand

- LTI filter with Infinite Impulse Response
- Its transfer function:

$$H(z) = \frac{\sum_{i=0}^{n} b_i z^{-i}}{1 + \sum_{i=1}^{n} a_i z^{-i}}$$

Context: digital filters

On the one hand

- LTI filter with Infinite Impulse Response
- Its transfer function:

$$H(z) = \frac{\sum_{i=0}^{n} b_i z^{-i}}{1 + \sum_{i=1}^{n} a_i z^{-i}}$$

On the other hand

- Hardware or Software target
- Implementation in Fixed-Point Arithmetic

LTI filters

Let $\mathcal{H} := (\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D})$ be a LTI filter:

$$\mathcal{H} \left\{ \begin{array}{rcl} \boldsymbol{x}(k+1) &=& \boldsymbol{A}\boldsymbol{x}(k) + \boldsymbol{B}\boldsymbol{u}(k) \\ \boldsymbol{y}(k) &=& \boldsymbol{C}\boldsymbol{x}(k) + \boldsymbol{D}\boldsymbol{u}(k) \end{array} \right.$$

The filter \mathcal{H} is considered Bounded Input Bounded Output stable iif

 $ho(\mathbf{A}) < 1$

The input u(k) is considered bounded by \bar{u} .

Two's complement Fixed-Point arithmetic

$$y = -2^m y_m + \sum_{i=\ell}^{m-1} 2^i y_i$$

- Wordlength: w
- Most Significant Bit position: m
- Least Significant Bit position: $\ell := m w + 1$

Two's complement Fixed-Point arithmetic

$$y = -2^m y_m + \sum_{i=\ell}^{m-1} 2^i y_i$$

- $y(k) \in \mathbb{R}$
- wordlength w bits
- minimal Fixed-Point Format (FPF) is the least m:

$$\forall k, y(k) \in [-2^m; 2^m - 2^{m-w+1}]$$

Fixed-Point IIR filter implementation using Matlab[®]

Fixed-Point implementation in practice: simulation using Matlab/Simulink^1 tools:

¹http://www.mathworks.com

Fixed-Point implementation in practice: simulation using Matlab/Simulink^1 tools:

1) random system simulation

¹http://www.mathworks.com

Fixed-Point implementation in practice: simulation using Matlab/Simulink^1 tools:

- 1) random system simulation
- 2) deduce the magnitudes

¹http://www.mathworks.com

Fixed-Point implementation in practice: simulation using Matlab/Simulink^1 tools:

- 1) random system simulation
- 2) deduce the magnitudes
- 3) set some wordlength

¹http://www.mathworks.com

Fixed-Point implementation in practice: simulation using Matlab/Simulink^1 tools:

- 1) random system simulation
- 2) deduce the magnitudes
- 3) set *some* wordlength
- 4) compute the Fixed-Point formats

¹http://www.mathworks.com

Fixed-Point implementation in practice: simulation using Matlab/Simulink^1 tools:

- 1) random system simulation
- 2) deduce the magnitudes
- 3) set some wordlength
- 4) compute the Fixed-Point formats
- 5) compare to reference filter

¹http://www.mathworks.com

Fixed-Point implementation in practice: simulation using Matlab/Simulink¹ tools:

- 1) random system simulation
- 2) deduce the magnitudes
- 3) set *some* wordlength
- 4) compute the Fixed-Point formats
- 5) compare to reference filter
- 6) if not convinced, increase the wordlength and return to Step 4

¹http://www.mathworks.com

Fixed-Point implementation in practice: simulation using Matlab/Simulink¹ tools:

- 1) random system simulation
- 2) deduce the magnitudes
- 3) set some wordlength
- 4) compute the Fixed-Point formats
- 5) compare to reference filter
- 6) if not convinced, increase the wordlength and return to Step 4

Unsatisfactory process!

Non-exhaustive simulations, using a floating-point simulation as reference \rightarrow no guarantees on the implementation

¹http://www.mathworks.com

Example using Matlab

A random 5th order Butterworth: 5 states, 1 input, 1 output.

•
$$\bar{u} = 1$$

•
$$ho({m A}) = 1 - 1.44 imes 10^{-4}$$

Example using Matlab

A random 5th order Butterworth: 5 states, 1 input, 1 output.

•
$$\bar{u} = 1$$

•
$$ho({m A}) = 1 - 1.44 imes 10^{-4}$$

Fixed-Point implementation:

- Simulating for $k = 0, \ldots, 1000$
- 1000 random input sequences

•
$$\bar{y}_{sim} = 5.72$$

Example using Matlab

A random 5th order Butterworth: 5 states, 1 input, 1 output.

•
$$\bar{u} = 1$$

• $\rho(\mathbf{A}) = 1 - 1.44 \times 10$

Fixed-Point implementation:

• Simulating for $k = 0, \ldots, 1000$

_4

- 1000 random input sequences
- $\bar{y}_{sim} = 5.72$

▲ Simulation is not exhaustive

Simulation-based approach is not rigorous. What to do?

Our approach: reliable Fixed-Point implementation

Input:

- $\mathcal{H} = (\boldsymbol{A}, \boldsymbol{B}, \boldsymbol{C}, \boldsymbol{D})$
- bound $ar{m{u}}(k)$ on the input interval
- wordlength constraints

Determine rigorously the Fixed-Point Formats s.t.

- the least MSBs
- no overflows
 - \rightsquigarrow pay attention to computational errors

Our approach: reliable Fixed-Point implementation

Input:

- $\mathcal{H} = (\boldsymbol{A}, \boldsymbol{B}, \boldsymbol{C}, \boldsymbol{D})$
- bound $ar{m{u}}(k)$ on the input interval
- wordlength constraints

Determine rigorously the Fixed-Point Formats s.t.

- the least MSBs
- no overflows
 - $\rightsquigarrow\,$ pay attention to computational errors

Our approach:

- 1) determine analytically the output interval of all variables
- 2) analyze propagation of the error in filter implementation and determine the Fixed-point formats

Deducing the output interval²

 $^2\mbox{A.V.}$ et al., "Reliable Evaluation of the Worst-Case Peak Gain Matrix in Multiple Precision", ARITH22, 2015

A. Volkova

Basic brick: the Worst-Case Peak Gain theorem

Basic brick: the Worst-Case Peak Gain theorem

Our random 5th order Butterworth: 5 states, 1 input, 1 output.

• $\bar{u} = 1$

- $\rho(\mathbf{A}) = 1 1.44 \times 10^{-4}$ Naive WCPG computation
 - sum over 1000 terms

•
$$\bar{y}_{WCPG} = 55.91 \ (\bar{y}_{sim} = 5.72)$$

Our random 5th order Butterworth: 5 states, 1 input, 1 output.

- $\bar{u} = 1$
- $\rho(\mathbf{A}) = 1 1.44 \times 10^{-4}$ Naive WCPG computation
 - sum over 1000 terms

•
$$\bar{y}_{WCPG} = 55.91 \ (\bar{y}_{sim} = 5.72)$$

Our random 5th order Butterworth: 5 states, 1 input, 1 output.

- $\bar{u} = 1$
- $\rho(\mathbf{A}) = 1 1.44 \times 10^{-4}$
- Naive WCPG computation
 - sum over 1000 terms

•
$$\bar{y}_{WCPG} = 55.91 \ (\bar{y}_{sim} = 5.72)$$

▲ Still not reliable. Why?
→ not enough terms for the WCPG

Our random 5th order Butterworth: 5 states, 1 input, 1 output.

- $\bar{u} = 1$
- $\rho(\mathbf{A}) = 1 1.44 \times 10^{-4}$

Naive WCPG computation

sum over 1000 terms

•
$$\bar{y}_{WCPG} = 55.91 \ (\bar{y}_{sim} = 5.72)$$

▲ Still not reliable. Why?
→ not enough terms for the WCPG

How to compute the WCPG matrix reliably?

Problem: compute the Worst-Case Peak Gain with arbitrary precision.

$$\left<\left<\mathcal{H}\right>\right> = \left|\boldsymbol{D}\right| + \sum_{k=0}^{\infty} \left|\boldsymbol{C}\boldsymbol{A}^{k}\boldsymbol{B}\right|$$

- Deduce reliable lower bound on truncation order
- Once the sum is truncated, evaluate it in multiple precision

Truncation

Truncation

$$\left|\sum_{k=0}^{\infty} \left| \boldsymbol{C} \boldsymbol{A}^k \boldsymbol{B} \right| - \sum_{k=0}^{N} \left| \boldsymbol{C} \boldsymbol{A}^k \boldsymbol{B} \right|
ight| \leq arepsilon_1$$

Compute an approximate lower bound on truncation order N such that the truncation error is smaller than ε_1 .

Lower bound on truncation order N

$$N \geq \left\lceil rac{\log rac{arepsilon_1}{\|oldsymbol{M}\|_{min}}}{\log
ho(oldsymbol{A})}
ight
ceil, \quad ext{with } oldsymbol{M} := \sum_{l=1}^n rac{|oldsymbol{R}_l|}{1-|oldsymbol{\lambda}_l|} rac{|oldsymbol{\lambda}_l|}{
ho(oldsymbol{A})}$$

where

$$oldsymbol{\lambda}-{ ext{eigenvalues}}$$
 of matrix $oldsymbol{A}$

 $m{R}_{\it I}-{\it I}^{th}$ residue matrix computed out of $m{C},m{B},m{\lambda}$

A. '	v	o	lk	o١	/a

 $\sum_{k=0}^{N} \left| \boldsymbol{C} \boldsymbol{A}^{k} \boldsymbol{B} \right|$

cancellation

 $\sum_{k=0}^{N} \left| \boldsymbol{C} \boldsymbol{A}^{k} \boldsymbol{B} \right|$ \times = \times =

cancellation

less cancellation

 $\sum_{k=0}^{N} \left| \boldsymbol{C} \boldsymbol{A}^{k} \boldsymbol{B} \right|$ \times = \times =

 $\mathbf{A} = \mathbf{X} \mathbf{E} \mathbf{X}^{-1}$

cancellation

less cancellation

 $\sum_{k=0}^{N} \left| \boldsymbol{C} \boldsymbol{A}^{k} \boldsymbol{B} \right|$ \times = \times =

 $\mathbf{A} = \mathbf{X} \mathbf{E} \mathbf{X}^{-1}$

cancellation

less cancellation

 $m{V} pprox m{X}$ and $m{T} pprox m{E}$

$$\sum_{k=0}^{N} \left| \boldsymbol{C} \boldsymbol{A}^{k} \boldsymbol{B} \right| \quad - \quad \sum_{k=0}^{N} \left| \boldsymbol{C} \boldsymbol{V} \boldsymbol{T}^{k} \boldsymbol{V}^{-1} \boldsymbol{B} \right| \leq \varepsilon_{2}$$

Given matrix V compute T such that the error of substitution of the product VT^kV^{-1} instead of A^k is less than ε_2 .

Further steps

$$\sum_{k=0}^{N} \left| \boldsymbol{C} \boldsymbol{A}^{k} \boldsymbol{B} \right| \quad - \quad \sum_{k=0}^{N} \left| \boldsymbol{C} \boldsymbol{V} \boldsymbol{T}^{k} \boldsymbol{V}^{-1} \boldsymbol{B} \right| \leq \varepsilon_{2}$$

Apply the same approach for the other steps:

$$\left|\sum_{k=0}^{N} \left| \boldsymbol{C} \boldsymbol{V} \boldsymbol{T}^{k} \boldsymbol{V}^{-1} \boldsymbol{B} \right| - \sum_{k=0}^{N} \left| \boldsymbol{C}' \boldsymbol{T}^{k} \boldsymbol{B}' \right| \right| \leq \varepsilon_{3}$$
$$\left| \sum_{k=0}^{N} \left| \boldsymbol{C}' \boldsymbol{T}^{k} \boldsymbol{B}' \right| - \sum_{k=0}^{N} \left| \boldsymbol{C}' \boldsymbol{P}_{k} \boldsymbol{B}' \right| \right| \leq \varepsilon_{4}$$
$$\left| \sum_{k=0}^{N} \left| \boldsymbol{C}' \boldsymbol{P}_{k} \boldsymbol{B}' \right| - \sum_{k=0}^{N} \left| \boldsymbol{L}_{k} \right| \right| \leq \varepsilon_{5}$$
$$\left| \sum_{k=0}^{N} \left| \boldsymbol{L}_{k} \right| - \boldsymbol{S}_{N} \right| \leq \varepsilon_{6}$$

Further steps

$$\sum_{k=0}^{N} \left| \boldsymbol{C} \boldsymbol{A}^{k} \boldsymbol{B} \right| \quad - \quad \sum_{k=0}^{N} \left| \boldsymbol{C} \boldsymbol{V} \boldsymbol{T}^{k} \boldsymbol{V}^{-1} \boldsymbol{B} \right| \leq \varepsilon_{2}$$

Apply the same approach for the other steps:

$$\left|\sum_{k=0}^{N} \left| \boldsymbol{C} \boldsymbol{V} \boldsymbol{T}^{k} \boldsymbol{V}^{-1} \boldsymbol{B} \right| - \sum_{k=0}^{N} \left| \boldsymbol{C}' \boldsymbol{T}^{k} \boldsymbol{B}' \right| \right| \leq \varepsilon_{3}$$
$$\left| \sum_{k=0}^{N} \left| \boldsymbol{C}' \boldsymbol{T}^{k} \boldsymbol{B}' \right| - \sum_{k=0}^{N} \left| \boldsymbol{C}' \boldsymbol{P}_{k} \boldsymbol{B}' \right| \right| \leq \varepsilon_{4}$$
$$\left| \sum_{k=0}^{N} \left| \boldsymbol{C}' \boldsymbol{P}_{k} \boldsymbol{B}' \right| - \sum_{k=0}^{N} \left| \boldsymbol{L}_{k} \right| \right| \leq \varepsilon_{5}$$
$$\left| \sum_{k=0}^{N} \left| \boldsymbol{L}_{k} \right| - \boldsymbol{S}_{N} \right| \leq \varepsilon_{6}$$

We can determine the output interval of a filter with arbitrary precision.

Our random 5th order Butterworth:

5 states, 1 input, 1 output.

- $\bar{u} = 1$
- $\rho(\mathbf{A}) = 1 1.44 \times 10^{-4}$

Our random 5th order Butterworth:

5 states, 1 input, 1 output.

•
$$\rho(\mathbf{A}) = 1 - 1.44 \times 10^{-4}$$

We computed WCPG with $\varepsilon = 2^{-64}$:

Approach	Ν	\bar{y}
Simulation	-	5.72
Naive WCPG	1 000	55.91
Our WCPG	352 158	772.04

Figure: Output y(k) reaches a ε -neighborhood of \overline{y} .

A. Volkova

Determining the Fixed-Point Formats³

 $^3\text{A.V.}$ et al., "Determining Fixed-Point Formats for a Digital Filter Implementation using the Worst-Case Peak Gain Measure", Asilomar 49, 2015

$$\mathcal{H} \left\{ \begin{array}{rcl} \boldsymbol{x}(k+1) &=& \boldsymbol{A}\boldsymbol{x}(k) + \boldsymbol{B}\boldsymbol{u}(k) \\ \boldsymbol{y}(k) &=& \boldsymbol{C}\boldsymbol{x}(k) + \boldsymbol{D}\boldsymbol{u}(k) \end{array} \right.$$

We know that if $\forall k, |\boldsymbol{u}_i(k)| \leq \bar{\boldsymbol{u}}_i$, then

$$\forall k, |\mathbf{y}_i(k)| \leq (\langle \langle \mathcal{H} \rangle \rangle \, \bar{\mathbf{u}})_i.$$

$$\mathcal{H} \left\{ \begin{array}{rcl} \boldsymbol{x}(k+1) &=& \boldsymbol{A}\boldsymbol{x}(k) + \boldsymbol{B}\boldsymbol{u}(k) \\ \boldsymbol{y}(k) &=& \boldsymbol{C}\boldsymbol{x}(k) + \boldsymbol{D}\boldsymbol{u}(k) \end{array} \right.$$

We know that if $\forall k, |\boldsymbol{u}_i(k)| \leq \bar{\boldsymbol{u}}_i$, then

$$\forall k, |\mathbf{y}_i(k)| \leq (\langle \langle \mathcal{H} \rangle \rangle \, \bar{\mathbf{u}})_i.$$

We need to find the least m_{ν} such that

$$|\forall k, |\mathbf{y}_i(k)| \leq 2^{\mathbf{m}_{y_i}} - 2^{\mathbf{m}_{y_i} - \mathbf{w}_{y_i} + 1}$$

$$\mathcal{H} \left\{ \begin{array}{rcl} \boldsymbol{x}(k+1) &=& \boldsymbol{A}\boldsymbol{x}(k) + \boldsymbol{B}\boldsymbol{u}(k) \\ \boldsymbol{y}(k) &=& \boldsymbol{C}\boldsymbol{x}(k) + \boldsymbol{D}\boldsymbol{u}(k) \end{array} \right.$$

We know that if $\forall k, |\boldsymbol{u}_i(k)| \leq \bar{\boldsymbol{u}}_i$, then

$$\forall k, |\mathbf{y}_i(k)| \leq (\langle \langle \mathcal{H} \rangle \rangle \, \bar{\mathbf{u}})_i \, .$$

We need to find the least m_v such that

$$| \forall k, \quad | \mathbf{y}_i(k) | \leq 2^{\mathbf{m}_{y_i}} - 2^{\mathbf{m}_{y_i} - \mathbf{w}_{y_i} + 1}$$

It easy to show that m_{y} can be computed with

$$m{m}_{y_i} = ig \lceil \log_2\left(\left< \left< \mathcal{H} \right> \right> ar{m{u}}
ight)_i - \log_2\left(1 - 2^{1 - m{w}_{y_i}}
ight) ig
ceil$$

$$\mathcal{H} \left\{ \begin{array}{rcl} \boldsymbol{x}(k+1) &=& \boldsymbol{A}\boldsymbol{x}(k) + \boldsymbol{B}\boldsymbol{u}(k) \\ \boldsymbol{y}(k) &=& \boldsymbol{C}\boldsymbol{x}(k) + \boldsymbol{D}\boldsymbol{u}(k) \end{array} \right.$$

We know that if $\forall k, |\boldsymbol{u}_i(k)| \leq \bar{\boldsymbol{u}}_i$, then

$$\forall k, |\mathbf{y}_i(k)| \leq (\langle \langle \mathcal{H} \rangle \rangle \, \bar{\mathbf{u}})_i \, .$$

We need to find the least m_v such that

$$\forall k, \quad |\mathbf{y}_i(k)| \leq 2^{\mathbf{m}_{y_i}} - 2^{\mathbf{m}_{y_i} - \mathbf{w}_{y_i} + 1}$$

It easy to show that m_{y} can be computed with

$$oldsymbol{m}_{y_i} = ig \lceil \log_2\left(\left< \left< \mathcal{H} \right> \right> oldsymbol{ar{u}}
ight)_i - \log_2\left(1 - 2^{1 - oldsymbol{w}_{y_i}}
ight) ig
ceil$$

Control the accuracy of the WCPG such that $0 \leq \widehat{\boldsymbol{m}}_{y_i} - \boldsymbol{m}_{y_i} \leq 1$

The exact filter \mathcal{H} is:

$$\mathcal{H} \left\{ \begin{array}{ll} \boldsymbol{x} \ (k+1) &= & \boldsymbol{A} \boldsymbol{x} \ (k) + \boldsymbol{B} \boldsymbol{u}(k) \\ \boldsymbol{y} \ (k) &= & \boldsymbol{C} \boldsymbol{x} \ (k) + \boldsymbol{D} \boldsymbol{u}(k) \end{array} \right.$$

The actually implemented filter \mathcal{H}^{\Diamond} is:

$$\mathcal{H}^{\Diamond} \left\{ \begin{array}{rcl} \boldsymbol{x}^{\Diamond}(k+1) &=& \Diamond_{\boldsymbol{m}_{\boldsymbol{x}}}(\boldsymbol{A}\boldsymbol{x}^{\Diamond}(k) + \boldsymbol{B}\boldsymbol{u}(k)) \\ \boldsymbol{y}^{\Diamond}(k) &=& \Diamond_{\boldsymbol{m}_{\boldsymbol{y}}}(\boldsymbol{C}\boldsymbol{x}^{\Diamond}(k) + \boldsymbol{D}\boldsymbol{u}(k)) \end{array} \right.$$

where \Diamond_m is some operator ensuring faithful rounding:

$$|\Diamond_m(x)-x|\leq 2^{m-w+1}.$$

The actually implemented filter \mathcal{H}^{\Diamond} is:

$$\mathcal{H}^{\Diamond} \left\{ \begin{array}{rcl} \boldsymbol{x}^{\Diamond}(k+1) &=& \Diamond_{m_{x}}(\boldsymbol{A}\boldsymbol{x}^{\Diamond}(k) + \boldsymbol{B}\boldsymbol{u}(k)) + \boldsymbol{\varepsilon}_{x}(k) \\ \boldsymbol{y}^{\Diamond}(k) &=& \Diamond_{m_{y}}(\boldsymbol{C}\boldsymbol{x}^{\Diamond}(k) + \boldsymbol{D}\boldsymbol{u}(k) + \boldsymbol{\varepsilon}_{y}(k) \end{array} \right.$$

with

$$|arepsilon_x(k)| \leq 2^{{m m}_x-{m w}_x+1} \quad ext{and} \quad |arepsilon_y(k)| \leq 2^{{m m}_y-{m w}_y+1}.$$

The actually implemented filter \mathcal{H}^{\Diamond} is:

$$\mathcal{H}^{\Diamond} \left\{ \begin{array}{rcl} \boldsymbol{x}^{\Diamond}(k+1) &=& \Diamond_{m_{x}}(\boldsymbol{A}\boldsymbol{x}^{\Diamond}(k) + \boldsymbol{B}\boldsymbol{u}(k)) + \boldsymbol{\varepsilon}_{x}(k) \\ \boldsymbol{y}^{\Diamond}(k) &=& \Diamond_{m_{y}}(\boldsymbol{C}\boldsymbol{x}^{\Diamond}(k) + \boldsymbol{D}\boldsymbol{u}(k) + \boldsymbol{\varepsilon}_{y}(k) \end{array} \right.$$

with

$$|\varepsilon_{x}(k)| \leq 2^{m_{x}-w_{x}+1}$$
 and $|\varepsilon_{y}(k)| \leq 2^{m_{y}-w_{y}+1}$.

The actually implemented filter \mathcal{H}^{\Diamond} is:

$$\mathcal{H}^{\Diamond} \left\{ \begin{array}{rcl} \boldsymbol{x}^{\Diamond}(k+1) &=& \Diamond_{m_{x}}(\boldsymbol{A}\boldsymbol{x}^{\Diamond}(k) + \boldsymbol{B}\boldsymbol{u}(k)) + \boldsymbol{\varepsilon}_{x}(k) \\ \boldsymbol{y}^{\Diamond}(k) &=& \Diamond_{m_{y}}(\boldsymbol{C}\boldsymbol{x}^{\Diamond}(k) + \boldsymbol{D}\boldsymbol{u}(k) + \boldsymbol{\varepsilon}_{y}(k) \end{array} \right.$$

with

$$|\varepsilon_{x}(k)| \leq 2^{m_{x}-w_{x}+1} \text{ and } |\varepsilon_{y}(k)| \leq 2^{m_{y}-w_{y}+1}.$$

$$\underbrace{u(k)}_{x(k+1)}\underbrace{y^{\diamond}(k)}_{x(k+1)} \underbrace{u(k)}_{(\varepsilon_{x}(k))} \mathcal{H}_{\Delta} \underbrace{\mathcal{H}_{\Delta}}_{\Delta(k)}$$

Step 1: Determine the initial guess MSBs \boldsymbol{m}_{γ} for the exact filter \mathcal{H}

- Step 1: Determine the initial guess MSBs \boldsymbol{m}_{y} for the exact filter \mathcal{H}
- Step 2: Compute the error-filter \mathcal{H}_{Δ} , induced by the format m_y and deduce the MSBs m_{ζ}^{\Diamond}

- Step 1: Determine the initial guess MSBs \boldsymbol{m}_{y} for the exact filter \mathcal{H}
- Step 2: Compute the error-filter \mathcal{H}_{Δ} , induced by the format \boldsymbol{m}_{y} and deduce the MSBs $\boldsymbol{m}_{c}^{\Diamond}$

Step 3: If $\boldsymbol{m}_{y_i}^{\Diamond} == \boldsymbol{m}_{y_i}$ then return $\boldsymbol{m}_{y_i}^{\Diamond}$ otherwise $\boldsymbol{m}_{y_i} \leftarrow \boldsymbol{m}_{y_i} + 1$ and go to Step 2.

Our random 5th order Butterworth: 5 states, 1 input, 1 output.

- $\bar{u} = 1$
- $\rho(\mathbf{A}) = 1 1.44 \times 10^{-4}$
- wordlengths set to 7 bits

		states				output
	$\boldsymbol{x}_1(k)$	$\mathbf{x}_2(k)$	x ₃ (k)	$\mathbf{x}_4(k)$	$\boldsymbol{x}_5(k)$	y (k)
Matlab	8	9	9	9	8	7
Our approach	11	12	12	12	11	11

Table: Resulting MSB positions

Conclusion

- Proposed a new completely rigorous approach for the Fixed-Point implementation of linear digital filters
- Provided reliable evaluation of the WCPG measure
- Applied the WCPG measure to determine the Fixed-Point Formats that guarantee no overflow

Perspectives:

- Solve the off-by-one problem for the MSBs
- Accuracy of the algorithms for the design of IIR filters
 - \rightsquigarrow develop approaches to take the quantization error into account
- Formalize proofs in a Formal Proof Checker

Thank you!

 $\widehat{\boldsymbol{m}} = [\mathfrak{m}]$

Problem: interval *m* contains a power of 2.

 $\widehat{\boldsymbol{m}} = [\mathfrak{m}]$

Problem: interval *m* contains a power of 2. **Technique:** Ziv's strategy to reduce interval

 $\widehat{\boldsymbol{m}} = [\mathfrak{m}]$

Problem: interval *m* contains a power of 2. **Technique:** Ziv's strategy to reduce interval

Dilemma:

- propagation of computational errors or
- overestimation in linear filter decomposition?

 $\widehat{\boldsymbol{m}} = [\mathfrak{m}]$

Problem: interval **m** contains a power of 2. **Technique:** Ziv's strategy to reduce interval

Dilemma:

- propagation of computational errors or
- overestimation in linear filter decomposition?

Possible approach:

- Assume the format $\widehat{\boldsymbol{m}} = p$
- Does there exist a reachable $x^{\Diamond}(k)$ s.t. $y^{\Diamond}(k)$ overflows ?

 $\widehat{\boldsymbol{m}} = [\mathfrak{m}]$

Problem: interval **m** contains a power of 2. **Technique:** Ziv's strategy to reduce interval

Dilemma:

- propagation of computational errors or
- overestimation in linear filter decomposition?

Possible approach:

- Assume the format $\widehat{\boldsymbol{m}} = \boldsymbol{p}$
- Does there exist a reachable $\mathbf{x}^{\Diamond}(k)$ s.t. $\mathbf{y}^{\Diamond}(k)$ overflows ?

Technique: SMT? integer linear programming? LLL?

Context: implementation of LTI filters

- Transfer function generation
 - ! Coefficient quantization
- Algorithm choice: State-space, Direct Form I, Direct Form II, ...
 ! Large variety of structures with no common quality criteria
- Software or Hardware implementation
 - ! Constraints: power consumption, area, error, speed, etc.
 - ! Computational errors due to finite-precision implementation

Filter-to-code generator

Figure: Automatic filter generator flow.

- Stage 1: analytical filter realization representation (SIF)
- Stage 2: filter quality measures

Stage 3: fixed-point algorithm (rigorous approach, computational errors are taken into account, no onverflows)

Stage 4: Fixed-Point Code Generator

Numerical example

Example:

- Random filter with 3 states, 1 input, 1 output
- $\bar{u} = 5.125$, wordlengths set to 7 bits

		states	output			
	$\boldsymbol{x}_1(k)$	$\boldsymbol{x}_2(k)$	$\boldsymbol{x}_{3}(k)$	$\mathbf{y}(k)$		
Step 1	6	7	5	6		
Step 2	6	7	6	6		
Step 3	6	7	6	6		
Ta	able: Evolu	Evolution of the MSB positions				

Numerical example

Figure: The exact and quantized outputs of the example. Quantized output does not pass over to the next binade.

Numerical example

Figure: The exact and quantized third state of the example. Quantized state passes over to the next binade.