Performances de schémas d'évaluation polynomiale sur architectures vectorielles

8ème Rencontres Arithmétique de l'Informatique Mathématique Banyuls

Hugues de Lassus Saint-Geniès et Guillaume Revy

DALI, Université de Perpignan Via Domitia LIRMM, Université de Montpellier CNRS UMR 5506

28 - 30 juin 2016

Motivations

Approximation of elementary functions

- Tedious, architecture-dependant and error-prone implementations
- Wide variety of software libraries: performances vs accuracy
- Often involves polynomial evaluations

Goals of the MetaLibm ANR project:

- Automatize code generation for mathematical functions and filters
- Get high performances given a target accuracy and architecture

Our goals:

- Generate { vectorizable vectorized code for polynomial evaluation
- Use features of the target architectures to improve performances

In this talk:

- How do different polynomial schemes behave on **SIMD FP units**?
- Study of the performance of classic and latency-minimal schemes
- Native precision computations
- No adaptation of coefficients (Knuth & Eve, Paterson & Stockmeyer)
- Impact on elementary function evaluation (a vectorized logarithm)

Some conclusions:

- The classic Horner's rule is quickly not the best choice for efficiency.
- **Denormalization** can be fatal to performance.
- Faster, more parallel schemes can have enough accuracy for faithfully-rounded functions.

- 2 Studying the vectorization of polynomial evaluations
- 3 Impacts on function approximation
- 4 Conclusions and perspectives

1 Reminder on polynomial evaluation schemes

- 2 Studying the vectorization of polynomial evaluations
- 3 Impacts on function approximation
- 4 Conclusions and perspectives

The most usual polynomial schemes:

4 / 23

Latency = # cycles required for a complete evaluation = # cycles for the critical path on infinite parallelism

Latencies: Horner-2

6 / 23

Latencies: Estrin's scheme

Latencies: first conclusions

On pipelined architectures, passed a certain degree, latencies can be lowered with more parallel schemes.

Latencies: first conclusions

On pipelined architectures, passed a certain degree, latencies can be lowered with more parallel schemes.

How is throughput impacted?

- As intruction parallelism increases, so does the pressure on registers.
- A common "rule of thumb" is: parallel schemes have better latencies but worse throughputs than sequential schemes.

Reminder on polynomial evaluation schemes

2 Studying the vectorization of polynomial evaluations

- 3 Impacts on function approximation
- 4 Conclusions and perspectives

Objectives:

- Be able to choose **fast** polynomial evaluation schemes
- Benefit from vector extensions of our ISA (SWAR)

Protocol:

- Benchmarks of Horner, 2nd-order Horner and Estrin schemes
- Polynomials of degrees ranging from 3 to 32
- Using Taylor(log, 1) for the coefficients
- ISA featuring AVX2, with or without FMA (Haswell, ~Ivy Bridge)
- Single / double precision
- Compiler: GCC 5.2.0

Scalar vs. autovectorized code: First observations

Scalar vs. autovectorized code: First observations

Do arithmetic instructions always have the same latency, regardless of the inputs?

• For instance, what happens when x^n or a partial result is **denormal**?

Experimental protocol:

- 2^{10} samples x between 2^{-12} and 2^{-5}
- Measure the latency to compute x¹⁶ using a naive and a binary approach:
 - naive: $x \otimes x \otimes \cdots \otimes x$
 - binary: $((x \otimes x) \otimes (x \otimes x)) \otimes \dots$

Impact of denormalization (2)

120-150 cycles penalty for MULSS normal, normal -> denormal ~> Confirmed by Agner Fog's optimization manuals

Throughputs with GCC 5.2 for inputs in [1, 2]

The obvious:

- FMA is a ≈2x-gain;
- Parallel schemes become more efficient as n increases

The not-so-obvious:

- Denormalization can introduce huge overheads;
- The sixteen 256-bit AVX registers seem to resist well the pressure of moderately high degrees;

Are there even more parallel, more efficient schemes? \rightarrow use CGPE¹

¹http://cgpe.gforge.inria.fr/

Comparisons with other schemes (1)

All schemes of minimal latency (for Haswell without FMA) for the degree 12, compared with classic schemes

... when no denormalization occurs.

When x^{12} is a denormal number...

Schémas triés par nombre de multiplications croissant

And when x^8 is a denormal number.

Schémas triés par nombre de multiplications croissant

Reminder on polynomial evaluation schemes

2 Studying the vectorization of polynomial evaluations

- Impacts on function approximation
- 4 Conclusions and perspectives

Implementation of a **faithful vectorized single-precision natural logarithm** for AVX2 architectures, using Intel Intrinsics Instructions:

- Logarithm approximation is quite simple
- Single-precision allows **native precision** computations for faithfulness
- Intrinsics enable easy access to assembly instructions and are supported by GCC.

Real world application: high-energy collision of two protons

- log was the 2nd most-called function in a Cern's CMS simulation² (> 7 M calls in > 4300 traces)
- Average of 1600 calls/trace

²Piparo & Innocente 2016

Implementation details:

• Evaluates 4 logarithms at a time in 4 steps:

() Special treatment for denormals and inputs $> 2^{126}$

•
$$x' = x \cdot 2^{23}$$
 or $x' = x \cdot 2^{-2}$

• Then,
$$\ln(x) = \ln(x') + (-23||2) \cdot \ln 2$$

2 Range reduction using RCPPS : $u = x \cdot \circ \left(\frac{1}{x}\right) - 1$

- 3 Table-based reduction, using GATHER: $\log_2(\circ(\frac{1}{x}))$
- Olynomial evaluation and reconstruction:

$$\ln x \approx -\ln 2 \cdot \left(\log_2\left(\circ\left(\frac{1}{x}\right)\right) + (23||0) - (2||0)\right) + \ln(1+u)_{\text{poly}}$$

- **Degree-5 fp-minimax polynomial** beginning with $0 + x + \dots$
- Used Intrinsics backend within CGPE, without FMA (FMA optimization handled by compiler)

Results (1) : Throughput and size of logf_4

(throughput in cycles/scalar result):

Compiler	Implementation	Interval	Throughput	Code + Data(B)
ICC 16.0.1	Intel SVML	${[2^{-149}, 2^{-126}]\atop [2^{-12}, 2^{12}]}$	11 4.5	2200
GCC 6.1.0	GNU Libmvec	${[2^{-149}, 2^{-126}] \atop [2^{-12}, 2^{12}]}$	N/A 1.3	522
	CGPE deg-5	$[2^{-149}, 2^{-126}]$ $[2^{-12}, 2^{12}]$	43 7.6	1282
	Horner	$[2^{-149}, 2^{-126}]$ $[2^{-12}, 2^{12}]$	44 7.4	1266
	Horner-2	$[2^{-149}, 2^{-126}]$ $[2^{-12}, 2^{12}]$	42 7.5	1274
	Estrin	$[2^{-149}, 2^{-126}]$ $[2^{-12}, 2^{12}]$	41 7.4	1270

Caveats:

- Sizes for Intel SVML and GNU Libmvec only for main routines
- GNU Libmvec needs -ffast-math ~> no denormals, no exceptions,

Results (1): Throughput and size of logf_4

(throughput in cycles/scalar result):

Compiler	Implementation	Interval	Throughput	Code + Data(B)
ICC 16.0.1	Intel SVML	${[2^{-149}, 2^{-126}]\atop [2^{-12}, 2^{12}]}$	11 4.5	2200
GCC 6.1.0	GNU Libmvec	${[2^{-149}, 2^{-126}] \atop [2^{-12}, 2^{12}]}$	N/A 1.3	522
	CGPE deg-5	$[2^{-149}, 2^{-126}]$ $[2^{-12}, 2^{12}]$	43 7.6	1282
	Horner	$[2^{-149}, 2^{-126}]$ $[2^{-12}, 2^{12}]$	44 7.4	1266
	Horner-2	$[2^{-149}, 2^{-126}]$ $[2^{-12}, 2^{12}]$	42 7.5	1274
	Estrin	$[2^{-149}, 2^{-126}]$ $[2^{-12}, 2^{12}]$	41 7.4	1270

Caveats:

- Sizes for Intel SVML and GNU Libmvec only for main routines
- GNU Libmvec needs -ffast-math ~> no denormals, no exceptions, ...

Conclusions

- Low impact of the polynomial scheme at degree 5 for our implementation
- High cost of mulps for renormalization ~>> integer ops should be used instead

20 / 23

Implementation	Interval	Max. error (ulps)	Incorrect rounding ratio
Intel SVML GNU Libmvec	$\frac{[2^{-149}, 2^{128} - 2^{104}]}{[0.5, 1]}$	1 2.25	24% 67%
CGPE deg-5 Horner Horner-2 Estrin	$[2^{-149}, 2^{128} - 2^{104}]$	0.997 0.997 0.997 0.997	$\begin{array}{c} 2.8\times10^{-9}\\ 2.8\times10^{-9}\\ 2.8\times10^{-9}\\ 2.8\times10^{-9}\\ 2.8\times10^{-9}\end{array}$

Caveats:

Intel SVML and GNU Libmvec use the I/O precision for intermediate computations

Implementation	Interval	Max. error (ulps)	Incorrect rounding ratio
Intel SVML GNU Libmvec	$\frac{[2^{-149}, 2^{128} - 2^{104}]}{[0.5, 1]}$	1 2.25	24% 67%
CGPE deg-5 Horner Horner-2 Estrin	$[2^{-149}, 2^{128} - 2^{104}]$	0.997 0.997 0.997 0.997	$\begin{array}{c} 2.8\times10^{-9}\\ 2.8\times10^{-9}\\ 2.8\times10^{-9}\\ 2.8\times10^{-9}\\ 2.8\times10^{-9}\end{array}$

Caveats:

Intel SVML and GNU Libmvec use the I/O precision for intermediate computations

Conclusions:

Our logf_4 is almost always correctly-rounded (6 results are "only" faithful) Reminder on polynomial evaluation schemes

2 Studying the vectorization of polynomial evaluations

3 Impacts on function approximation

Automatic generation of polynomial evaluations should take into account

- Iow-level, architecture-dependant details: SIMD/SWAR, FMA available...
- the degree of the polynomial to be implemented
- if input domain and evaluation scheme may introduce denormalization (on specific architectures)
- the compiler (for vector code and FMA)

- Handle FMA in CGPE directly: ≠ latencies, maybe ≠ low-latency schemes
- Automate the choice of efficient schemes with respect to:
 - Floating-point arithmetic (binary32, binary64)
 - (μ-)Architecture (extensions, arithmetic units, registers, caches, ...)
 - Polynomial degree
 - I/O precision/accuracy
 - Maybe more?
- Observe how extended-precision algorithms perform

Performances de schémas d'évaluation polynomiale sur architectures vectorielles

8ème Rencontres Arithmétique de l'Informatique Mathématique Banyuls

Hugues de Lassus Saint-Geniès et Guillaume Revy

DALI, Université de Perpignan Via Domitia LIRMM, Université de Montpellier CNRS UMR 5506

28 - 30 juin 2016

