Enhanced Digital Signature using RNS Digit Exponent Representation

Thomas Plantard⁽¹⁾, Jean-Marc ROBERT⁽²⁾

1: CCISR, SCIT, University of Wollongong, Australia 2: Team DALI/LIRMM, University of Perpignan, France

Work funded by ANR PAVOIS 12 BS02 002 02 project

Outline

Signature

- General Idea
- State of the Art for Modular Exponentiation

*m*₀*m*₁ Exponentiation Method

- Contributions
- Radix-R and RNS Digit representation
- m₀m₁ Modular Exponentiation
- Software Implementation and Performances

Outline

1

Signature

- General Idea
- State of the Art for Modular Exponentiation

m₀m₁ Exponentiation Method

- Contributions
- Radix-R and RNS Digit representation
- m₀m₁ Modular Exponentiation
- Software Implementation and Performances

3 Conclusion and Future Work

General Idea

Outline

Signature

General Idea

• State of the Art for Modular Exponentiation

m₀m₁ Exponentiation Method

- Contributions
- Radix-R and RNS Digit representation
- $m_0 m_1$ Modular Exponentiation
- Software Implementation and Performances

3 Conclusion and Future Work

DSA Signature

Bob signs a message to Alice :-)

		\mathcal{S}, \mathcal{M}
	x ightarrow Bob's private key	$y ightarrow {\sf Bob's}$ public key
[Group \mathcal{G}	$((\mathbb{Z}/p\mathbb{Z})^*, imes,1)$
ĺ	Bob hashes the mess	age <i>M</i> , using an approved hash function,
		$\Rightarrow z = \mathcal{H}(M);$
	Bob's public parameters	a prime $p \in \mathbb{N}$ a generator g of \mathcal{G} of order q
	Bob's private key	$x \in [1, q-1]$
	Bob's public key	$y = g^{\times} \mod p$

 \mathcal{S}, M

DSA Signature (2)

Bob signs a message to Alice :-)

Bob chooses a random parameter $k \in [1, q-1]$

Signature (Bob)

$$\mathcal{S} = (r, s)$$

with $\begin{cases} r = (g^k \mod p) \mod q \\ s = (k^{-1}(z + xr)) \mod q \end{cases}$

 $\begin{array}{c} \mathcal{V}erif(\mathcal{S}):\\ \text{Alice receives } (r',s') \text{ and } M'.\\ w = (s')^{-1} \mod q\\ z = \mathcal{H}(M')\\ u_1 = (zw) \mod q\\ u_2 = ((r')w) \mod q\\ u = ((g^{u_1}y^{u_2} \mod p) \mod q)\\ \rightarrow \text{Alice checks wether } u = r'. \end{array}$

DSA Signature (2)

 \rightarrow The main operation is the modular exponentiation $g^k \mod p$.

Outline

1

- Signature
- General Idea

• State of the Art for Modular Exponentiation

- m₀m₁ Exponentiation Method
 - Contributions
 - Radix-R and RNS Digit representation
 - $m_0 m_1$ Modular Exponentiation
 - Software Implementation and Performances

3 Conclusion and Future Work

Square-and-Multiply

Left-to-Right Square-and-Multiply Modular Exponentiation

```
Require: k = (k_{t-1}, \ldots, k_0), the DSA modulus p, g a generator of \mathbb{Z}/p\mathbb{Z} of order q.

Ensure: X = g^k \mod p

X \leftarrow 1

for i from t - 1 downto 0 do

X \leftarrow X^2 \mod p

if k_i = 1 then

X \leftarrow X \cdot g \mod p

end if

end for

return (X)
```

${\sf Square-and-Multiply}$

Left-to-Right Square-and-Multiply Modular Exponentiation

```
Require: k = (k_{t-1}, \ldots, k_0), the DSA modulus p, g a generator of \mathbb{Z}/p\mathbb{Z} of order q.

Ensure: X = g^k \mod p

X \leftarrow 1

for i from t - 1 downto 0 do

X \leftarrow X^2 \mod p

if k_i = 1 then

X \leftarrow X \cdot g \mod p

end if

end for

return (X)
```

No storage, t-1 squarings, $\approx \frac{t}{2}$ multiplications.

Radix-R

Radix-R Exponentiation Method (Gordon, 1998)

```
Require: k = (k_{\ell-1}, ..., k_0)_R, the DSA modulus p, g a generator of \mathbb{Z}/p\mathbb{Z} of order q.

Ensure: X = g^k \mod p

Precomputation. Store G_{i,j} \leftarrow g^{i \cdot R^i}, with i \in [1, ..., R-1] and 0 \le j < \ell.

X \leftarrow 1

for i from \ell - 1 downto 0 do

X \leftarrow X \cdot G_{k_i,i} \mod p

end for

return (X)
```

Radix-R

Radix-R Exponentiation Method (Gordon, 1998)

Require: $k = (k_{\ell-1}, ..., k_0)_R$, the DSA modulus p, g a generator of $\mathbb{Z}/p\mathbb{Z}$ of order q. Ensure: $X = g^k \mod p$ Precomputation. Store $G_{i,j} \leftarrow g^{i \cdot R^i}$, with $i \in [1, ..., R-1]$ and $0 \le j < \ell$. $X \leftarrow 1$ for i from $\ell - 1$ downto 0 do $X \leftarrow X \cdot G_{k_i,i} \mod p$ end for return (X)

With
$$w \leftarrow \log_2(R) \rightarrow \text{Storage of } \lceil t/w \rceil \cdot (R-1) \text{ values } \in \mathbb{F}_p,$$

no squarings, $\ell = \lceil t/w \rceil$ multiplications.

Fixed-base Comb Method

Fixed-base Comb Method (Lim & Lee, Crypto '94)

```
Require: k = (k_{t-1}, ..., k_1, k_0)_2, the DSA modulus p, g a generator of \mathbb{Z}/p\mathbb{Z} of order q, window width w, d = \lceil t/w \rceil.

Ensure: X = g^k \mod p

By padding k on the left by 0's if necessary, write k = K^{w-1} \parallel ... \parallel K^1 \parallel K^0, where each K^j is a bit string of length d. Let K_i^j denote the i^{\text{th}} bit of K^j.

X \leftarrow 1

for i from d - 1 downto 0 do

X \leftarrow X^2 \mod p

X \leftarrow X \cdot g^{[K_i^{w-1},...,K_i^1,K_i^0]} \mod p

end for

return (X)
```

Fixed-base Comb Method

Fixed-base Comb Method (Lim & Lee, Crypto '94)

```
Require: k = (k_{t-1}, ..., k_1, k_0)_2, the DSA modulus p, g a generator of \mathbb{Z}/p\mathbb{Z}
of order q, window width w, d = \lceil t/w \rceil.
Ensure: X = g^k \mod p
By padding k on the left by 0's if necessary, write k = K^{w-1} || ... || K^1 || K^0,
where each K^j is a bit string of length d. Let K_i^j denote the i^{\text{th}} bit of K^j.
X \leftarrow 1
for i from d - 1 downto 0 do
X \leftarrow X^2 \mod p
X \leftarrow X \cdot g^{[K_i^{w-1},...,K_i^1,K_i^0]} \mod p
end for
return (X)
```

With
$$d \leftarrow \lceil t/w \rceil \rightarrow$$
 Storage of $2^w - 1$ values $\in \mathbb{F}_p$,
 $d - 1$ squarings, d multiplications.

Synthesis

Complexities and storage amounts of state of the art methods, average case.						
	storage $(\# ext{ values} \in \mathbb{F}_p)$					
	Square-and-multiply	t/2	t-1	-		
	Radix- <i>R</i> method	$\lceil t/w \rceil$	-	$\lceil t/w \rceil \cdot (R-1)$		
	Fixed-base Comb	d-1	$2^{w} - 1$			

Synthesis

Complexities and	d storage amounts	of state of the	art methods,	average case.
------------------	-------------------	-----------------	--------------	---------------

	# MM	# MS	storage $(\# ext{ values} \in \mathbb{F}_p)$
Square-and-multiply	t/2	t-1	-
Radix- <i>R</i> method	$\lceil t/w \rceil$	-	$\lceil t/w \rceil \cdot (R-1)$
Fixed-base Comb	$d = \lceil t/w \rceil$	d-1	$2^{w} - 1$

key size t = 512 bits (MS = $0.86 \times MM$).

Outline

Signature

- General Idea
- State of the Art for Modular Exponentiation

m_0m_1 Exponentiation Method

- Contributions
- Radix-R and RNS Digit representation
- m₀m₁ Modular Exponentiation
- Software Implementation and Performances

3 Conclusion and Future Work

Outline

Signature

- General Idea
- State of the Art for Modular Exponentiation

m_0m_1 Exponentiation Method

Contributions

- Radix-R and RNS Digit representation
- m₀m₁ Modular Exponentiation
- Software Implementation and Performances

3 Conclusion and Future Work

Starting from the Radix-*R* method:

• RNS digit recoding for exponent;

Starting from the Radix-*R* method:

- RNS digit recoding for exponent;
- Enhanced algorithm for modular exponentiation;

Starting from the Radix-R method:

- RNS digit recoding for exponent;
- Enhanced algorithm for modular exponentiation;
- Complexity and storage requirements evaluation;

Starting from the Radix-R method:

- RNS digit recoding for exponent;
- Enhanced algorithm for modular exponentiation;
- Complexity and storage requirements evaluation;
- Software implementations, showing performance improvements.

Outline

Signature

- General Idea
- State of the Art for Modular Exponentiation

m_0m_1 Exponentiation Method

Contributions

• Radix-R and RNS Digit representation

- *m*₀*m*₁ Modular Exponentiation
- Software Implementation and Performances

3 Conclusion and Future Work

The Radix- $R = m_0 \cdot m_1$ representation is as follows $(gcd(m_0, m_1) = 1)$:

$$k = \sum_{i=0}^{\ell-1} k_i R^i$$
, with $\ell = \lceil t/\log_2(R) \rceil$,

and we represent the digits k_i using RNS with base $\mathcal{B} = \{m_0, m_1\}$:

$$\begin{cases} k_i^{(0)} = k_i \mod m_0 = |k_i|_{m_0}, \\ k_i^{(1)} = k_i \mod m_1 = |k_i|_{m_1}. \end{cases}$$

The Radix- $R = m_0 \cdot m_1$ representation is as follows $(gcd(m_0, m_1) = 1)$:

$$k = \sum_{i=0}^{\ell-1} k_i R^i$$
, with $\ell = \lceil t/\log_2(R) \rceil$,

and we represent the digits k_i using RNS with base $\mathcal{B} = \{m_0, m_1\}$:

$$\begin{cases} k_i^{(0)} = k_i \mod m_0 = |k_i|_{m_0}, \\ k_i^{(1)} = k_i \mod m_1 = |k_i|_{m_1}. \end{cases}$$

Chinese Remainder Theorem

Using the CRT, one can retrieve k_i :

$$k_i = \left| k_i^{(0)} \cdot m_1 \cdot |m_1^{-1}|_{m_0} + k_i^{(1)} \cdot m_0 \cdot |m_0^{-1}|_{m_1} \right|_R.$$

In the sequel, let's denote (when $k_i^{(1)} \neq 0$)

$$\left. \begin{array}{l} m_0' = m_1 \cdot |m_1^{-1}|_{m_0}, \\ m_1' = m_0 \cdot |m_0^{-1}|_{m_1}, \\ k_i' = |k_i^{(0)} \cdot (k_i^{(1)})^{-1}|_{m_0}. \end{array} \right\}$$

In the sequel, let's denote (when $k_i^{(1)} \neq 0$)

$$\left. \begin{array}{l} m'_0 = m_1 \cdot |m_1^{-1}|_{m_0}, \\ m'_1 = m_0 \cdot |m_0^{-1}|_{m_1}, \\ k'_i = |k_i^{(0)} \cdot (k_i^{(1)})^{-1}|_{m_0}. \end{array} \right\} \text{ Recoding: } \rightarrow \kappa_i \leftarrow (k'_i, k_i^{(1)})$$

We then rewrite the CRT, with the modular reduction mod R, as follows:

"New" Chinese Remainder Theorem $k_{i} = k_{i}^{(1)} |k_{i}' \cdot m_{0}' + m_{1}'|_{R} - |k_{i}^{(1)} \cdot |k_{i}' \cdot m_{0}' + m_{1}'|_{R}/R| \cdot R.$

In the sequel, let's denote (when $k_i^{(1)} \neq 0$)

$$\begin{array}{l} m'_{0} = m_{1} \cdot |m_{1}^{-1}|_{m_{0}}, \\ m'_{1} = m_{0} \cdot |m_{0}^{-1}|_{m_{1}}, \\ k'_{i} = |k_{i}^{(0)} \cdot (k_{i}^{(1)})^{-1}|_{m_{0}}. \end{array} \right\} \text{ Recoding: } \rightarrow \kappa_{i} \leftarrow (k'_{i}, k_{i}^{(1)})$$

We then rewrite the CRT, with the modular reduction mod R, as follows:

"New" Chinese Remainder Theorem

$$k_i = k_i^{(1)} |k'_i \cdot m'_0 + m'_1|_R - \overbrace{\lfloor k_i^{(1)} \cdot |k'_i \cdot m'_0 + m'_1|_R / R \rfloor}^C \cdot R.$$

In the sequel, let's denote (when $k_i^{(1)} \neq 0$)

$$\left. \begin{array}{l} m'_0 = m_1 \cdot |m_1^{-1}|_{m_0}, \\ m'_1 = m_0 \cdot |m_0^{-1}|_{m_1}, \\ k'_i = |k_i^{(0)} \cdot (k_i^{(1)})^{-1}|_{m_0}. \end{array} \right\} \text{ Recoding: } \rightarrow \kappa_i \leftarrow (k'_i, k_i^{(1)})$$

We then rewrite the CRT, with the modular reduction mod R, as follows:

"New" Chinese Remainder Theorem

$$k_i = k_i^{(1)} |k_i' \cdot m_0' + m_1'|_R - \overbrace{\lfloor k_i^{(1)} \cdot |k_i' \cdot m_0' + m_1'|_R/R \rfloor}^C \cdot R.$$

$C \text{ is a carry } (0 \le C < m_1):$ $\begin{cases} \text{ if } k_{i+1} \ge C & \text{then} & k_{i+1} \leftarrow k_{i+1} - C, C \leftarrow 0, \\ \text{ else} & k_{i+1} \leftarrow k_{i+1} + R - C, C \leftarrow 1, \end{cases}$ and one gets $k_{i+1} \ge 0.$

When
$$k_i^{(1)} = 0$$
:
 $k_i = (|k_i^{(0)} + 1|_{m_0} \cdot m'_0 - m'_0)$,
thus keeping $\kappa_i \leftarrow (|k_i^{(0)} + 1|_{m_0}, 0)$ as a representation of
 k_i in this case.

- *C* is not modified here (it is either 0 or 1 and has been previously settled).
- it might be necessary to process a last carry C, with a final correction.

When
$$k_i^{(1)} = 0$$
:
 $k_i = (|k_i^{(0)} + 1|_{m_0} \cdot m'_0 - m'_0)$,
thus keeping $\kappa_i \leftarrow (|k_i^{(0)} + 1|_{m_0}, 0)$ as a representation of
 k_i in this case.

- *C* is not modified here (it is either 0 or 1 and has been previously settled).
- it might be necessary to process a last carry C, with a final correction.

$$\rightarrow \text{ The sequence of the } \kappa_i \leftarrow (k'_i, k^{(1)}_i) \text{ is }$$
the $m_0 m_1$ recoding of k .

$m_0 m_1$ Recoding

```
Require: \{m_0, m_1\} RNS base with R = m_0 \cdot m_1, k = \sum_{i=0}^{\ell-1} k_i R^i.
Ensure: {\kappa_i, 0 \le i < \ell, (C)}, m_0 m_1 recoding of scalar k.
 1: C \leftarrow 0
 2: for i from 0 to \ell - 1 do
 3: k_i \leftarrow k_i - C, C \leftarrow 0
 4: if k_i < 0 then
 5:
         k_i \leftarrow k_i + R. \ C \leftarrow 1
6: end if
7: k_i^{(0)} = |k_i|_{m_0}, k_i^{(1)} = |k_i|_{m_1}.
 8: if k_{i}^{(1)} = 0 then
         \kappa_i \leftarrow (|k_i^{(0)} + 1|_{m_0}, 0)
 9:
10:
        else
      k'_i \leftarrow |k^{(0)}_i \cdot (k^{(1)}_i)^{-1}|_{m_0}
11:
12: C \leftarrow C + \lfloor k_i^{(1)} \cdot |k_i' \cdot m_0' + m_1'|_R/R \rfloor
             \kappa_i \leftarrow (k'_i, k^{(1)}_i)
13:
14:
          end if
15: end for
16: return {\kappa_i, 0 < i < \ell, (-C)}
```

Example: $\mathcal{B} = \{11, 8\}$ (i.e. $m_0 = 11, m_1 = 8$), $R = m_0 \cdot m_1 = 88$, $\ell = \lceil 20/\log_2(88) \rceil = 4$, and therefore

$$m'_0 = 8 \cdot |8^{-1}|_{11} = 56, \ m'_1 = 11 \cdot |11^{-1}|_8 = 33.$$

Let us take $k = 936192_{10}$ (exponent size t of 20 bits, $0 < k < 2^{20}$) $k = 48 + 78 \cdot 88 + 32 \cdot 88^2 + 1 \cdot 88^3$.

Let us take $k = 936192_{10}$ (exponent size t of 20 bits, $0 < k < 2^{20}$)

 $k = 48 + 78 \cdot 88 + 32 \cdot 88^2 + 1 \cdot 88^3.$

for loop, steps 2 to 15:

- In the first iteration (i = 0), one has $\kappa_0 = k_0 = 48$.
 - One has C ← 0 and one skips the if-test steps 4 to 6 since k₀ ≥ 0.
 - Step 7, one computes the RNS representation in base B of κ₀ = 48:

$$k_{\mathbf{0}}^{(\mathbf{0})} = |k_{\mathbf{0}}|_{\mathbf{11}} = 4, k_{\mathbf{0}}^{(\mathbf{1})} = |k_{\mathbf{0}}|_{\mathbf{8}} = 0.$$

• Steps 6 and 7, since
$$k_{\mathbf{0}}^{(\mathbf{1})} = 0$$
, one sets

$$\kappa_{\mathbf{0}} \leftarrow (|k_{\mathbf{0}}^{(\mathbf{0})} + 1|_{\mathbf{11}}, 0) = (5, 0)$$

Values returned by the algorithm:

$$\kappa = ((5,0),$$
), and

Let us take $k = 936192_{10}$ (exponent size t of 20 bits, $0 < k < 2^{20}$)

 $k = 48 + 78 \cdot 88 + 32 \cdot 88^2 + 1 \cdot 88^3.$

for loop, steps 2 to 15:

• In the second iteration (i = 1), one has $\kappa_1 = k_1 = 78$.

- One has C ← 0 and one skips the if-test steps 4 to 6 since k₁ ≥ 0.
- Step 7, one computes the RNS representation in base B of κ₁ = 78:

$$k_{1}^{(0)} = |k_{1}|_{11} = 1, k_{1}^{(1)} = |k_{1}|_{8} = 6$$

• Steps 11 and 12, since $k_{\mathbf{1}}^{(\mathbf{1})} \neq 0$, one has

$$|(k_1^{(1)})^{-1}|_{11} \leftarrow 2$$

$$k_{1}^{\prime} = |k_{1}^{(0)} \cdot (k_{1}^{(1)})^{-1}|_{11} \qquad \leftarrow 2$$

$$C \leftarrow |(k_{1}^{(1)} \cdot |k_{1}^{\prime} \cdot 56 + 33|_{88})/88| \qquad \leftarrow 3$$

and finally

$$\kappa_1 \leftarrow (2, 6)$$

Values returned by the algorithm:

$$\kappa = ((5,0), (2,6),), \text{ and }$$

Let us take $k = 936192_{10}$ (exponent size t of 20 bits, $0 < k < 2^{20}$)

 $k = 48 + 78 \cdot 88 + 32 \cdot 88^{2} + 1 \cdot 88^{3}$

for loop, steps 2 to 15:

• In the third iteration (i = 2), one has now $\kappa_2 \leftarrow k_2 - C = 29$.

- The RNS representation in base \mathcal{B} of κ_2 is $k_2^{(0)} = 7, k_2^{(1)} = 5$. The computation steps 11-12 gives $C \leftarrow 2$, and

 $\kappa_2 \leftarrow (8, 5).$

Values returned by the algorithm:

 $\kappa = ((5,0), (2,6), (8,5),$), and

Let us take $k = 936192_{10}$ (exponent size t of 20 bits, $0 < k < 2^{20}$)

 $k = 48 + 78 \cdot 88 + 32 \cdot 88^2 + 1 \cdot 88^3.$

Values returned by the algorithm:

$$\kappa = ((5,0), (2,6), (8,5), (3,7)), ext{ and } C = -2.$$

Outline

Signature

- General Idea
- State of the Art for Modular Exponentiation

m_0m_1 Exponentiation Method

- Contributions
- Radix-R and RNS Digit representation

• m₀m₁ Modular Exponentiation

• Software Implementation and Performances

3 Conclusion and Future Work

We use this recoding in modular exponentiation as follows:

$$g^{k} \mod p = g^{\sum_{i=0}^{\ell-1} k_{i} \cdot R^{i}} \mod p$$
$$= g^{\sum_{i=0}^{\ell-1} \kappa_{i} \cdot R^{i}} \cdot g^{C \cdot R^{\ell}} \mod p$$
$$= g^{C \cdot R^{\ell}} \cdot \prod_{i=0}^{\ell-1} g^{\kappa_{i} \cdot R^{i}} \mod p$$

$$\begin{array}{ll} \text{with,} & \text{when } k_1^{(1)} \neq 0: \quad g^{\kappa_i \cdot R^i} \ \operatorname{mod} p = g^{k_1^{(1)} \cdot R^i \cdot |k_i' \cdot m_0' + m_1'|_R} \ \operatorname{mod} p, \\ \text{and,} & \text{when } k_1^{(1)} = 0: \quad g^{\kappa_i \cdot R^i} \ \operatorname{mod} p = g^{R^i \cdot ||k_i^{(0)} + 1|_{m_0} \cdot m_0' + m_1'|_R} \ \operatorname{mod} p. \\ \end{array}$$

We use this recoding in modular exponentiation as follows:

$$g^k \mod p = g^{\sum_{i=0}^{\ell-1} k_i \cdot R^i} \mod p$$

= $g^{\sum_{i=0}^{\ell-1} \kappa_i \cdot R^i} \cdot g^{C \cdot R^\ell} \mod p$
= $g^{C \cdot R^\ell} \cdot \prod_{i=0}^{\ell-1} g^{\kappa_i \cdot R^i} \mod p$

$$\begin{array}{ll} \text{with,} & \text{when } k_1^{(1)} \neq 0: \quad g^{\kappa_i \cdot R^i} \ \operatorname{mod} p = g^{k_1^{(1)} \cdot R^i \cdot |k_i' \cdot m_0' + m_1'|_R} \ \operatorname{mod} p, \\ \text{and,} & \text{when } k_1^{(1)} = 0: \quad g^{\kappa_i \cdot R^i} \ \operatorname{mod} p = g^{R^i \cdot ||k_i^{(0)} + 1|_{m_0} \cdot m_0' + m_1'|_R} \ e^{-R^i \cdot |m_0' + m_1'|_R} \ \operatorname{mod} p. \end{array}$$

one stores the following values:

$$\begin{aligned} G_{i,j} &= g^{R^{\ell} \cdot |j \cdot m'_0 + m'_1|_{\boldsymbol{R}}} \bmod p, \text{ with } 0 \leq i \leq \ell - 1, 0 \leq j < m_0 \\ & \text{ and } G_{\ell,1} = g^{R^{\ell} \cdot |m'_0 + m'_1|_{\boldsymbol{R}}} \bmod p. \end{aligned}$$

one also stores the following inverses:

$$G_{i,-1} = g^{-R^i \cdot |m'_0 + m'_1|_R} \mod p \text{ avec } 0 \le i \le \ell$$

One uses one value \mathcal{K}_j per possible values of $1 \leq \kappa_i^{(1)} < m_1$, that is m_1 points:

$$\mathcal{K}_{j} = \left(\prod_{\text{for all } \kappa_{i}^{(1)}=j} \mathcal{G}_{i,\kappa_{i}^{(0)}}\right) \times \left(\mathcal{G}_{\ell,\textit{sign}(C)1}\right)_{|C|=j} \bmod p$$

and

$$\mathcal{K}_0 = \prod_{ \text{for all } \kappa_i^{(1)}=0} \mathcal{G}_{i,\kappa_i^{(0)}} imes \mathcal{G}_{i,-1} modes \mathcal{G}_i.$$

This leads to $g^k \mod p = \mathcal{K}_0 imes \prod_{j=1}^{m_1} \mathcal{K}_j^j.$

Fixed-base mom1 method modular exponentiation

Require: $\{m_0, m_1\}$ RNS base with $R = m_0 m_1, k = \sum_{i=0}^{\ell-1} k_i R^i$ and $\kappa = \{\kappa_i, 0 \le i < \ell, (C)\}$ the $m_0 m_1$ recoding of k, p, the DSA modulus, $g \in \mathbb{Z}/p\mathbb{Z}$, public generator of order q. Ensure: $X = g^k \mod p$ Precomputation. Store $G_{i,j} \leftarrow g^{R^i \cdot |j \cdot m'_0 + m'_1|} R$ with $0 \le i < \ell - 1, 0 \le j < m_0, G_{\ell,1} \leftarrow g^{R^\ell \cdot |m'_0 + m'_1|} R, G_{i,-1} \leftarrow g^{-R^i \cdot |m'_0 + m'_1|} R, 0 \le i \le \ell$

Computation of the K_j , $0 \leq j < m_1$

$$\begin{array}{l} A \leftarrow \mathbf{1}, K_j \leftarrow \mathbf{1} \text{ for } 0 \leq j < m_{\mathbf{1}} \\ \text{for } i \text{ from } 0 \text{ to } \ell - \mathbf{1} \text{ do} \\ \text{if } \kappa_i^{(1)} = 0 \text{ then} \\ K_0 \leftarrow K_0 \times G_{i,\kappa_i^{(0)}} \times G_{i,-1} \\ \text{else} \\ K_{\kappa_i^{(1)}} \leftarrow K_{\kappa_i^{(1)}} \times G_{i,\kappa_i^{(0)}} \\ \text{end if} \\ \text{end if} \\ \text{end for} \\ K_{|\mathbf{C}|} \leftarrow K_{|\mathbf{C}|} \times \mathcal{G}_{\ell,sign(\mathbf{C})\mathbf{1}} \end{array}$$

Final Reconstruction

$$\begin{split} & \mathcal{W} \leftarrow \text{size of } m_1 \text{ in bits} \\ & \text{for } i \text{ from } \mathcal{W} \text{ downto 0 do} \\ & A \leftarrow A^2 \\ & \text{for } j \text{ from } m_1 - 1 \text{ downto 1 do} \\ & \text{ if } \text{ bit } i \text{ of } j \text{ is non zero then} \\ & A \leftarrow A \times K_j \\ & \text{ end if} \\ & \text{end for} \\ & \text{return } (A \times K_0) \end{split}$$

Fixed-base mom1 method modular exponentiation

Require: $\{m_0, m_1\}$ RNS base with $R = m_0 m_1, k = \sum_{i=0}^{\ell-1} k_i R^i$ and $\kappa = \{\kappa_i, 0 \le i < \ell, (C)\}$ the $m_0 m_1$ recoding of k, p, the DSA modulus, $g \in \mathbb{Z}/p\mathbb{Z}$, public generator of order q. Ensure: $X = g^k \mod p$ Precomputation. Store $G_{i,j} \leftarrow g^{R^i \cdot |j \cdot m'_0 + m'_1|} R$ with $0 \le i < \ell - 1, 0 \le j < m_0, G_{\ell,1} \leftarrow g^{R^\ell \cdot |m'_0 + m'_1|} R, G_{i,-1} \leftarrow g^{-R^i \cdot |m'_0 + m'_1|} R, 0 \le i \le \ell$

TOTAL STORAGE : $(m_0 + 1) \times \ell + m_1 + 2$ elements of $\mathbb{Z}/p\mathbb{Z}$

Computation of the K_i , $0 \leq j < m_1$

$$\begin{array}{l} A \leftarrow 1, K_{j} \leftarrow 1 \text{ for } 0 \leq j < m_{1} \\ \text{for } i \text{ from } 0 \text{ to } \ell - 1 \text{ do} \\ \text{ if } \kappa_{i}^{(1)} = 0 \text{ then } \\ \kappa_{0} \leftarrow K_{0} \times G_{i,\kappa_{i}^{(0)}} \times G_{i,-1} \\ \text{else } \\ K_{\kappa_{i}^{(1)}} \leftarrow K_{\kappa_{i}^{(1)}} \times G_{i,\kappa_{i}^{(0)}} \\ \text{end if } \\ \text{end if } \\ \text{end for } \\ K_{|C|} \leftarrow K_{|C|} \times G_{\ell,sign(C)1} \end{array}$$

Final Reconstruction

```
 \begin{split} & W \leftarrow \text{size of } m_1 \text{ in bits} \\ & \text{for } i \text{ from } W \text{ downto 0 do} \\ & A \leftarrow A^2 \\ & \text{for } j \text{ from } m_1 - 1 \text{ downto 1 do} \\ & \text{ if bit } i \text{ of } j \text{ is non zero then} \\ & A \leftarrow A \times K_j \\ & \text{ end if} \\ & \text{end if} \\ & \text{end for} \\ & \text{return } (A \times K_0) \end{split}
```

Fixed-base mom1 method modular exponentiation

Require: $\{m_0, m_1\}$ RNS base with $R = m_0 m_1, k = \sum_{\substack{i=0 \ k \neq i}}^{l=0} k_i R^i$ and $\kappa = \{\kappa_i, 0 \le i < l, (C)\}$ the $m_0 m_1$ recoding of k, p, the DSA modulus, $g \in \mathbb{Z}/p\mathbb{Z}$, public generator of order q. Ensure: $X = g^k \mod p$ Precomputation. Store $G_{i,j} \leftarrow g^{R^i \cdot |j \cdot m'_0 + m'_1|} R$ with $0 \le i < l - 1, 0 \le j < m_0, G_{l,1} \leftarrow g^{R^l \cdot |m'_0 + m'_1|} R, G_{i,-1} \leftarrow g^{-R^l \cdot |m'_0 + m'_1|} R, 0 \le i \le l$

TOTAL STORAGE : $(m_0 + 1) \times \ell + m_1 + 2$ elements of $\mathbb{Z}/p\mathbb{Z}$

Computation of the K_i , $0 \leq j < m_1$

$$\begin{array}{l} A \leftarrow 1, K_{j} \leftarrow 1 \text{ for } 0 \leq j < m_{1} \\ \text{for } i \text{ from } 0 \text{ to } \ell - 1 \text{ do} \\ \text{ if } \kappa_{i}^{(1)} = 0 \text{ then} \\ K_{0} \leftarrow K_{0} \times G_{i,\kappa_{i}^{(0)}} \times G_{i,-1} \\ \text{else} \\ K_{\kappa_{i}^{(1)}} \leftarrow K_{\kappa_{i}^{(1)}} \times G_{i,\kappa_{i}^{(0)}} \\ \text{end if} \\ \text{end for} \\ K_{|C|} \leftarrow K_{|C|} \times G_{\ell,\textit{sign(C)1}} \\ \end{array}$$

$$\begin{array}{l} \text{Complexity} : \left(\ell \frac{m_{1}+1}{m_{1}} - m_{1} \right) \text{ MM} \end{array}$$

Final Reconstruction

```
 \begin{split} & W \leftarrow \text{size of } m_1 \text{ in bits} \\ & \text{for } i \text{ from } W \text{ downto 0 do} \\ & A \leftarrow A^2 \\ & \text{for } j \text{ from } m_1 - 1 \text{ downto 1 do} \\ & \text{ if bit } i \text{ of } j \text{ is non zero then} \\ & A \leftarrow A \times K_j \\ & \text{ end if} \\ & \text{end for} \\ & \text{return } (A \times K_0) \end{split}
```

```
+\mathcal{H} MM + (W-1) MS
```

Complexity of the Exponentiation Algorithm

Our previous example:

• $k = 936192_{10}$, exponent size t of 20 bits, and $\mathcal{B} = \{11, 8\}$, (i.e. $m_0 = 11, m_1 = 8$);

• radix
$$R = m_0 \cdot m_1 = 88 \ (\ell = 4);$$

$$\kappa = ((5,0), (2,6), (8,5), (3,7)), \text{ and } C = -2.$$

 $k = 936192_{10}, \kappa = ((5,0), (2,6), (8,5), (3,7)), \text{ and } C = -2.$

In terms of storage, one computes the values

$$G_{i,j} = g^{\mathbf{R}^i \cdot \left| j \cdot m'_{\mathbf{0}} + m'_{\mathbf{1}} \right|_{\mathbf{R}}} \mod p \text{ with } 0 \leq i \leq \ell - 1.$$

One has the following values of $\left|j\cdot m_0'+m_1'\right|_R$ for $0\leq j<11$:

 $\{33, 1, 57, 25, 81, 49, 17, 73, 41, 9, 65\}$

In our case, with the chosen parameters, this brings us to store the following values in $\mathbb{Z}/p\mathbb{Z}$:

$$G_{i} = \{g^{88^{i} \cdot 33}, g^{88^{i}}, g^{88^{i} \cdot 57}, g^{88^{i} \cdot 25}, g^{88^{i} \cdot 81}, g^{88^{i} \cdot 49}, g^{88^{i} \cdot 17}, g^{88^{i} \cdot 73}, g^{88^{i} \cdot 41}, g^{88^{i} \cdot 9}, g^{88^{i} \cdot 65}\}$$

 $k = 936192_{10}, \kappa = ((5,0), (2,6), (8,5), (3,7)), \text{ and } C = -2.$

 $G_i = \{g^{88^i \cdot 33}, g^{88^i}, g^{88^i \cdot 57}, g^{88^i \cdot 25}, g^{88^i \cdot 81}, g^{88^i \cdot 49}, g^{88^i \cdot 17}, g^{88^i \cdot 73}, g^{88^i \cdot 41}, g^{88^i \cdot 9}, g^{88^i \cdot 65}\}.$

First iteration (i = 0), $\kappa_0^{(1)} = 0$ (and $\kappa_0^{(0)} = 5$), and this gives

$$K_0 \leftarrow G_{0,\kappa_0^{(0)}} \times G_{0,-1} = g^{49} \times g^{-1} = g^{48}$$

$$K_0 \leftarrow g^{48}$$
,

 $k = 936192_{10}, \kappa = ((5,0), (2,6), (8,5), (3,7)), \text{ and } C = -2.$

 $G_i = \{g^{88^i \cdot 33}, g^{88^i}, g^{88^i \cdot 57}, g^{88^i \cdot 25}, g^{88^i \cdot 81}, g^{88^i \cdot 49}, g^{88^i \cdot 17}, g^{88^i \cdot 73}, g^{88^i \cdot 41}, g^{88^i \cdot 9}, g^{88^i \cdot 65}\}.$

Second iteration (i=1), $\kappa_1^{(1)}=6$ (and $\kappa_1^{(0)}=2$), and this gives

$$K_{6} \leftarrow {\it G}_{1,\kappa_{1}^{(0)}} = g^{88\cdot 57} = g^{5016}.$$

$$K_0 \leftarrow g^{48}$$
,

 $K_6 \leftarrow g^{5016}$,

 $k = 936192_{10}, \kappa = ((5,0), (2,6), (8,5), (3,7)), \text{ and } C = -2.$

$$G_i = \{g^{88^i \cdot 33}, g^{88^i}, g^{88^i \cdot 57}, g^{88^i \cdot 25}, g^{88^i \cdot 81}, g^{88^i \cdot 49}, g^{88^i \cdot 17}, g^{88^i \cdot 73}, g^{88^i \cdot 41}, g^{88^i \cdot 9}, g^{88^i \cdot 65}\}.$$

Third iteration (i=2), $\kappa_2^{(1)}=5$ (and $\kappa_2^{(0)}=8$), and this gives

$$K_5 \leftarrow G_{2,\kappa_2^{(0)}} = g^{88^2 \cdot 41} = g^{317504}$$

$$K_0 \leftarrow g^{48}, \qquad \qquad K_5 \leftarrow g^{317504}, \quad K_6 \leftarrow g^{5016},$$

 $k = 936192_{10}, \kappa = ((5,0), (2,6), (8,5), (3,7)), \text{ and } C = -2.$

 $G_i = \{g^{88^i \cdot 33}, g^{88^i}, g^{88^i \cdot 57}, g^{88^i \cdot 25}, g^{88^i \cdot 81}, g^{88^i \cdot 49}, g^{88^i \cdot 17}, g^{88^i \cdot 73}, g^{88^i \cdot 41}, g^{88^i \cdot 9}, g^{88^i \cdot 65}\}.$

Fourth iteration (i = 3), $\kappa_2^{(1)} = 7$ (and $\kappa_2^{(0)} = 3$), and this gives

$$K_7 \leftarrow G_{3,\kappa_2^{(0)}} = g^{88^3 \cdot 25} = g^{17036800}.$$

$$K_0 \leftarrow g^{48}, \qquad \qquad K_5 \leftarrow g^{317504}, \quad K_6 \leftarrow g^{5016}, \quad K_7 \leftarrow g^{17036800}.$$

T. Plantard and J.-M. Robert

26 / 32

 $k = 936192_{10}, \kappa = ((5,0), (2,6), (8,5), (3,7)), \text{ and } C = -2.$

 $G_i = \{g^{88^i \cdot 33}, g^{88^i}, g^{88^i \cdot 57}, g^{88^i \cdot 25}, g^{88^i \cdot 81}, g^{88^i \cdot 49}, g^{88^i \cdot 17}, g^{88^i \cdot 73}, g^{88^i \cdot 41}, g^{88^i \cdot 9}, g^{88^i \cdot 65}\}.$

The last carry C = -2 is now processed:

$$K_2 \leftarrow G_{4,-1} = g^{88^4 \cdot (-1)} = g^{-59969536}$$

$$K_0 \leftarrow g^{48}, \quad K_2 \leftarrow g^{-59969536}, \quad K_5 \leftarrow g^{317504}, \quad K_6 \leftarrow g^{5016}, \quad K_7 \leftarrow g^{17036800}.$$

 $k = 936192_{10}, \kappa = ((5,0), (2,6), (8,5), (3,7)), \text{ and } C = -2.$

 $G_i = \{g^{88^i \cdot 33}, g^{88^i}, g^{88^i \cdot 57}, g^{88^i \cdot 25}, g^{88^i \cdot 81}, g^{88^i \cdot 49}, g^{88^i \cdot 17}, g^{88^i \cdot 73}, g^{88^i \cdot 41}, g^{88^i \cdot 9}, g^{88^i \cdot 65}\}.$

Final Reconstruction

$$g^k \mod p = K_0 \times \prod_{j=1}^{m_1} K_j^j \mod p$$

= $g^{48+2\cdot(-59969536)+5\cdot317504+6\cdot5016+7\cdot17036800} \mod p$
= $g^{936192} \mod p$,

 \rightarrow which is the desired result.

$$K_0 \leftarrow g^{48}, \quad K_2 \leftarrow g^{-59969536}, \quad K_5 \leftarrow g^{317504}, \quad K_6 \leftarrow g^{5016}, \quad K_7 \leftarrow g^{17036800}.$$

Outline

Signature

- General Idea
- State of the Art for Modular Exponentiation

m_0m_1 Exponentiation Method

- Contributions
- Radix-R and RNS Digit representation
- *m*₀*m*₁ Modular Exponentiation
- Software Implementation and Performances

Conclusion and Future Work

Implementation of the m_0m_1 exponentiation algorithm

For the three considered exponentiation algorithms:

- C language, compiled with gcc 4.8.3;
- Platform: CPU Intel XEON[®] E5-2650 (Ivy bridge), CENTOS 7.0.1406, RAM 12.6 GBytes;
- Multiprecision Multiplication and Squaring: GMP library;
- Modular Reduction: block Montgomery approach;
- m₀m₁ Recoding: GMP library;
- Test processing : a few hundred of dataset for each size, with multiple run and averaging of the minimum of every dataset;
- The timings in clock cycles includes the recoding;
- Tests for the following standards (fips 186-4):

NIST key size (bits)	224	256	384	512
field size (bits)	2048	3072	7680	15360

Modular Exponentiation					
State of the	Art methods				
Fixed-base Comb	radix <i>R</i>	<i>m</i> ₀ , <i>m</i> ₁ rec.	ratio		
# <i>CC</i>	#CC	#CC	m ₀ , m ₁		
Storage	Storage	Storage	/Best S.o.A.		
key size 224 bits, field size 2048 bits (level of security: 112 bits)					
221108	227838	219864	×0.994		
1023.5 kB ($w = 12$)	829 kB (<i>R</i> = 91)	580 kB ($m_0 = 89, m_1 = 6$)	×0.700		
210074	206888	207072	×0.985		
2047.5 kB (w = 13)	1324 kB (<i>R</i> = 163)	766 kB ($m_0 = 127, m_1 = 7$)	×0.579		
149690	147877	146156	×0.988		
65535 kB (w = 18)	7289kB ($R = 1223$)	21599 kB ($m_0 = 5417, m_1 = 6$)	×2.96		

Storage Comparison kB (t=224 bits)

Modular Exponentiation					
State of the	Art methods				
Fixed-base Comb	radix <i>R</i>	<i>m</i> ₀ , <i>m</i> ₁ rec.	ratio		
# <i>CC</i>	#CC	#CC	m ₀ , m ₁		
Storage	Storage	Storage	/Best S.o.A.		
key size 256 bits, field size 3072 bits (level of security: 128 bits)					
524539	502981	501466	×0.997		
1535 kB (w = 12)	1411 kB (<i>R</i> = 91)	897 kB ($m_0 = 79, m_1 = 6$)	×0.636		
449397	445871	446444	×1.001		
6143 kB (w = 14)	2251 kB (<i>R</i> = 163)	2056 kB ($m_0 = 211, m_1 = 6$)	×0.913		
356892	354640	354071	×0.998		
98303 kB (w = 18)	6414 kB ($R = 571$)	12843 kB ($m_0 = 1721, m_1 = 7$)	×2.002		

Storage Comparison kB (t=256 bits)

Modular Exponentiation						
State of the	Art methods					
Fixed-base Comb	radix <i>R</i>	<i>m</i> ₀ , <i>m</i> ₁ rec.	ratio			
# <i>CC</i>	# <i>CC</i>	# <i>CC</i>	m ₀ , m ₁			
Storage	Storage	Storage	/Best S.o.A.			
key s	key size 384 bits, field size 7680 bits (level of security: 192 bits)					
4442590	4492191	4409584	×0.993			
1918 kB (w = 11)	3430 kB (<i>R</i> = 53)	1134 kB ($m_0 = 23, m_1 = 10$)	×0.467			
3554339	3524896	3551437	×1.008			
15358 kB (w = 14)	8290 kB (<i>R</i> = 163)	4164 kB ($m_0 = 113, m_1 = 10$)	×0.502			
2736341	2543480	2743399	×1.079			
245758 kB (w = 18)	45221 kB (<i>R</i> = 1223)	29961 kB ($m_0 = 1031, m_1 = 7$)	×0.662			

Storage Comparison kB (t=384 bits)

Modular Exponentiation						
State of the	e Art methods					
Fixed-base Comb	radix <i>R</i>	<i>m</i> ₀ , <i>m</i> ₁ rec.	ratio			
# <i>CC</i>	# <i>CC</i>	# <i>CC</i>	m ₀ , m ₁			
Storage	Storage	Storage	/Best S.o.A.			
key	key size 512 bits, field size 15360 bits (level of security: 256 bits)					
18632429	19260731	18550238	×0.996			
15536 kB (w = 13)	13765 kB (<i>R</i> = 91)	4745 kB ($m_0 = 41, m_1 = 10$)	×0.345			
14848261	15401002	14813453	×0.998			
122876 kB ($w = 16$)	34418 kB ($R = 163$)	22109 kB ($m_0 = 257, m_1 = 11$)	×0.642			
12477816	12193232	12499600	×1.025			
983036 kB (w = 19)	119061 kB ($R = 1223$)	102820 kB ($m_0 = 1381, m_1 = 7$)	×0.863			

Fixed-base Comb Radix-R m0m1 method

Storage Comparison kB (t=512 bits)

1e+06

Outline

Signature

- General Idea
- State of the Art for Modular Exponentiation
- *m*₀*m*₁ Exponentiation Method
 - Contributions
 - Radix-R and RNS Digit representation
 - m₀m₁ Modular Exponentiation
 - Software Implementation and Performances

Conclusion and Future Work

Conclusion and future work

We have presented:

- DSA signature protocol;
- Main State of the Art approaches for modular exponentiation;
- Our Contributions:
 - RNS digit recoding for exponent;
 - Enhanced algorithms for modular exponentiation;
 - Software implementations;
 - Performance results: storage saving up to three times;

Conclusion and future work

We have presented:

- DSA signature protocol;
- Main State of the Art approaches for modular exponentiation;
- Our Contributions:
 - RNS digit recoding for exponent;
 - Enhanced algorithms for modular exponentiation;
 - Software implementations;
 - Performance results: storage saving up to three times;

Future work:

- Application to elliptic curve signature (ECDSA);
- Develop improvements to thwart side-channel analysis (cache attack...);
- Hardware and embedded systems implementations.

Thank you for your attention,

Any questions ?

mail : jean-marc.robert@univ-perp.fr

home page : http://perso.univ-perp.fr/jeanmarc.robert

Work funded by ANR PAVOIS 12 BS02 002 02 project