Ciphertext permutation 00000

DPA attack 000000 Conclusion 0000

DPA on the 'Secure' Permutation in the McEliece PKC

Tania RICHMOND

Joint work with Martin Petrvalský, Miloš Drutarovský, Pierre-Louis Cayrel and Viktor Fischer

IMATH Laboratory University of Toulon

RAIM 2016 Banyuls-sur-mer June 30, 2016

Ciphertext permutation 00000

DPA attack 000000 Conclusion 0000

Outline

Context

Ciphertext permutation

DPA attack

Conclusion

Ciphertext permutation 00000

DPA attack 000000 Conclusion 0000

Outline

Context

Ciphertext permutation

DPA attack

Conclusion

Ciphertext permutation 00000 DPA attack 000000 Conclusion 0000

Communication

Once upon a time ...

a woman,

Alice

and a man,

who wanted to communicate together.

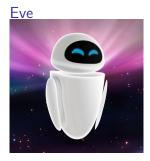
Ciphertext permutation 00000

DPA attack

Conclusion 0000

Attack

But, they did not want that anyone,



could understand this message.

Ciphertext permutation

DPA attack 000000 Conclusion 0000

Cryptology

That is why, they use cryptology, i.e., the science of secret.

kryptos=secret/hidden *logos*=science

Ciphertext permutation 00000

DPA attack 000000 Conclusion 0000

Cryptology

Two concepts :

Cryptography

"Secret writting"

Good Man

Cryptanalysis

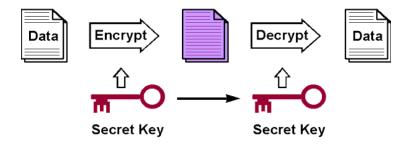
"Analysis of a secret message (cryptogram)"

Bad Man

Ciphertext permutation

DPA attack 000000 Conclusion 0000

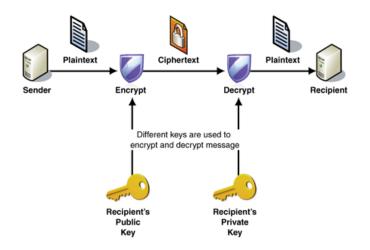
Symmetric Cryptography Ceasar



Ciphertext permutation

DPA attack 000000 Conclusion 0000

Asymmetric Cryptography [DH76]



Ciphertext permutation

DPA attack 000000 Conclusion 0000

McEliece cryptosystem [McE78]

- First code-based cryptosystem,
- proposed by Robert McEliece in 1978,
- originally using classical Goppa codes.

Ciphertext permutation 00000 DPA attack 000000 Conclusion 0000

Linear code

Definition (Linear code)

Let \mathbb{F}_q denoted the finite field of q elements. A linear code \mathscr{C} of length n and dimension k is a k-dimensional subspace of \mathbb{F}_q^n .

Definition (Generator matrix)

Let \mathscr{C} be a $[n, k]_q$ -linear code. Let $\mathcal{G} \in \mathscr{M}_{k,n}(\mathbb{F}_q)$. We call \mathcal{G} a generator matrix of \mathscr{C} iff \mathcal{G} -rows are basis vectors of \mathscr{C} .

Ciphertext permutation

DPA attack 000000 Conclusion 0000

McEliece key generation [McE78]

Inputs: *n* and *t* two integers.

- Choose a linear code C of length n and t-correcting.
 k : dimension of C.
- 2. Take one generator matrix $\mathcal{G} \in \mathscr{M}_{k,n}(\mathbb{F}_2)$ of \mathscr{C} .
- 3. Randomly choose one invertible matrix $\mathcal{S} \in \mathscr{M}_{k,k}(\mathbb{F}_2)$.
- 4. Randomly choose one permutation matrix $\mathcal{P} \in \mathscr{M}_{n,n}(\mathbb{F}_2)$.
- 5. Compute the generator matrix given by $\tilde{\mathcal{G}} = \mathcal{S} \cdot \mathcal{G} \cdot \mathcal{P}$.
- 6. $s_k \leftarrow (\mathcal{S}, \mathcal{G}, \mathcal{P}, \mathscr{C})$
- 7. $p_k \leftarrow (\tilde{\mathcal{G}}, t)$
- 8. Return (p_k, s_k) .

Outputs: Public key $p_k = (\tilde{\mathcal{G}}, t)$ and private key $s_k = (\mathcal{S}, \mathcal{G}, \mathcal{P}, \mathscr{C})$.

Ciphertext permutation

DPA attack 000000 Conclusion 0000

McEliece encryption [McE78]

Inputs: Public key $p_k = (\tilde{\mathcal{G}}, t)$, message $M \in \mathbb{F}_2^k$.

- 1. Encode the message $C = M \cdot \tilde{\mathcal{G}}$.
- 2. Randomly choose an error vector $E \in \mathbb{F}_2^n$ of weight $w_H(E) = t$.
- 3. Compute $\tilde{C} = C \oplus E$.
- 4. Return \tilde{C} .

Output: Ciphertext $\tilde{C} \in \mathbb{F}_2^n$ associted to M.

Ciphertext permutation

DPA attack 000000 Conclusion 0000

McEliece decryption [McE78]

Inputs: Private key $s_k = (S, G, P, \Gamma)$, ciphertext $\tilde{C} \in \mathbb{F}_2^n$.

- 1. Compute $\tilde{C}_p = \tilde{C} \cdot \mathcal{P}^{-1}$. i.e. $\tilde{C}_p = M \cdot S \cdot \mathcal{G} \oplus E \cdot \mathcal{P}^{-1}$
- 2. Decode \tilde{C}_p to obtain $M \cdot S \cdot G$.
- 3. Get $\tilde{M} = M \cdot S$ from $M \cdot S \cdot G$.
- 4. Compute $M = \tilde{M} \cdot S^{-1}$.
- 5. Return M.

Output: Plaintext $M \in \mathbb{F}_2^k$ associted to \tilde{C} .

Ciphertext permutation 00000

DPA attack 000000 Conclusion 0000

Side-Channel Attack (SCA) Differential Power Analysis (DPA)

Definition (SCA)

Exploit the laws of physics phenomenons to obtain some information contained in channels associated to an implementation (software or hardware).

Definition (DPA)

Use several power traces for a same secrete/private key, compute the average to avoid noise (very often), and find a pattern on power traces depending on the secrete/private key in order to recover it.

Ciphertext permutation

DPA attack 000000 Conclusion 0000

Outline

Context

Ciphertext permutation

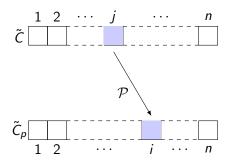
DPA attack

Conclusion

Ciphertext permutation •0000

DPA attack 000000 Conclusion 0000

'Simple' permutation



Ciphertext permutation 0000

DPA attack 000000 Conclusion 0000

'Simple' permutation

Inputs: Private permutation matrix $\mathcal{P}^{-1} \in \mathcal{M}_{n,n}(\mathbb{F}_2)$ represented by a lookup table $t^{\mathcal{P}^{-1}}$, ciphertext $\tilde{C} \in \mathbb{F}_2^n$.

For
$$i = 0$$
 to $n - 1$
 $j = t_i^{\mathcal{P}^{-1}}$
 $\tilde{C}_{p_i} = \tilde{C}_j$
Endfor

Return \tilde{C}_{p} .

Output: Permuted ciphertext $\tilde{C}_{p} \in \mathbb{F}_{2}^{n}$.

Ciphertext permutation

DPA attack 000000 Conclusion 0000

'Secure' permutation [STMOS08]

Inputs: Private permutation matrix $\mathcal{P}^{-1} \in \mathcal{M}_{n,n}(\mathbb{F}_2)$ represented by a lookup table $t^{\mathcal{P}^{-1}}$, ciphertext $\tilde{C} \in \mathbb{F}_2^n$.

1. For $i = 0$ to $n - 1$		10.	$s \mid = s \gg 4$
2.	$j = t_i^{\mathcal{P}^{-1}}$	11.	$s \mid = s \gg 8$
3.	$ ilde{C}_{ ho_i}=0$	12.	$s \mid = s \gg 16$
4.	For $h = 0$ to $n - 1$	13.	$s \ \& = 1$
5.	$k = \tilde{C}_{p_i}$	14.	$s=\sim (s-1)$
6.	$\mu = ilde{C}_h$	15.	$ ilde{\mathcal{C}}_{\mathcal{P}_i} = (s \And k) \mid ((\sim s) \And \mu)$
7.	$s = j \oplus h$	16.	Endfor
8.	$ s = s \gg 1$	17.	Endfor
9.	$s \mid = s \gg 2$	18.	Return \tilde{C}_{ρ}

Output: Permuted ciphertext $\tilde{C}_p \in \mathbb{F}_2^n$.

Ciphertext permutation 00000

DPA attack 000000 Conclusion 0000

'Secure' permutation [STMOS08]

Examples

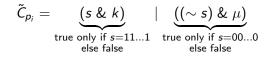
Steps	Test hypotheses				
7: $s = j \oplus h$	$1 \underbrace{00 \dots 0}$	0001	111	000	
8: $s \mid = s \gg 1$	$11\underbrace{00\ldots0}^{31}$	$\underbrace{\underbrace{00\ldots0}_{31}^{31}}_{1}$	$\underbrace{11\ldots 1}_{32}$	$\underbrace{\underbrace{00\ldots0}^{32}}_{32}$	
9: $s \mid = s \gg 2$	$1111\underbrace{00\ldots0}^{30}$	$\underbrace{00\ldots0}^{31}1$	$\underbrace{11\ldots 1}^{32}$	$\underbrace{00 \ldots 0}^{32}$	
10: $s \mid = s \gg 4$	$\underbrace{11\ldots1}_{00\ldots0}$	$\underbrace{00\ldots0}^{31} 1$	$\underbrace{11\ldots 1}^{32}$	$\underbrace{00\ldots0}^{32}$	
11: $s \models s \gg 8$	$\underbrace{11 \dots 1}^{8} \underbrace{00 \dots 0}^{24}$	$\underbrace{00\ldots0}^{31} 1$	$\underbrace{11 \dots 1}^{32}$	$\underbrace{00 \dots 0}^{32}$	
12: $s \mid = s \gg 16$	$\underbrace{\overset{16}{\underbrace{11\ldots1}}}^{16}$	$\underbrace{\underbrace{00\ldots0}^{31}}_{1}1$	$\underbrace{11 \dots 1}^{32}$	$\underbrace{\underbrace{00\ldots0}^{32}}_{00\ldots0}$	
$\overline{13: s \& = 1}$	$\underbrace{000}_{0001}^{32}$	$\overline{0001}$	$\bar{\underline{00}}_{\ldots}^{32}\bar{\underline{0}}_{1}^{\overline{1}}$	$\underbrace{\overline{00}}_{32}^{32}$	
14: $s = \sim (s-1)$	$\underbrace{\underbrace{11\ldots 1}_{32}}^{31}$	$\underbrace{\underbrace{11\ldots 1}_{32}}^{31}$	$\underbrace{\underbrace{11\ldots 1}_{32}}^{31}$	$\underbrace{\underbrace{00\ldots0}_{32}^{32}}_{32}$	

Ciphertext permutation

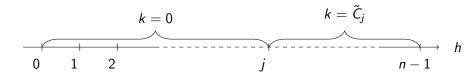
DPA attack 000000 Conclusion 0000

Weakness [PRDCF16]

Leakage Step 15:



Giving:



Ciphertext permutation 00000

DPA attack

Conclusion 0000

Outline

Context

Ciphertext permutation

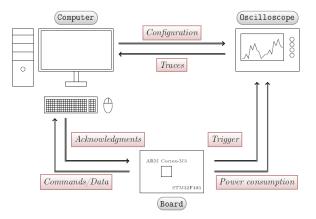
DPA attack

Conclusion

Ciphertext permutation

DPA attack •00000 Conclusion 0000

Attack bench [PRDCF16]



Ciphertext permutation 00000 DPA attack 000000 Conclusion 0000

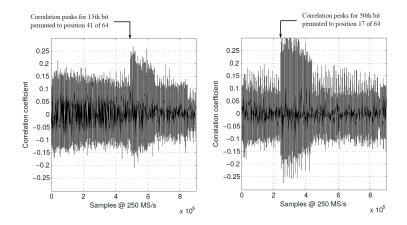
Traces analysis [PRDCF16]

- Apply a Hamming weight of individual bits leakage model: $H_i \in \{0, 1\}$,
- Use correlation coefficient to test our hypotheses compared with measurements,
- Good hypothesis if the coefficient is (almost) 1 or -1,
- Average of 500 traces per ciphertext hypothesis to avoid noise,
- Chosen ciphertexts as every vectors of weight 1.

Ciphertext permutation

DPA attack 000000 Conclusion 0000

Traces examples [PRDCF16]



Ciphertext permutation

DPA attack 000000 Conclusion 0000

Countermeasure [PRDCF16]

Algorithm

Inputs: Private permutation matrix $\mathcal{P}^{-1} \in \mathcal{M}_{n,n}(\mathbb{F}_2)$ represented by a lookup table $t^{\mathcal{P}^{-1}}$, ciphertext $\tilde{C} \in \mathbb{F}_2^n$ and private generator matrix \mathcal{G} of $\Gamma(\mathcal{L}, \mathcal{G})$.

1. Randomly choose $B \in \Gamma(\mathcal{L}, G)$ 12. $s \mid = s \gg 2$ 2. $B_p = B \cdot \mathcal{P}$ 13. $s = s \gg 4$ 3. $\tilde{C}' = \tilde{C} \oplus B_n$ 14. $s = s \gg 8$ 4. For i = 0 to n - 115. $s = s \gg 16$ 5. $i = t_i^{\mathcal{P}^{-1}}$ 16. s & = 16. \tilde{C}_{D} = 0 17. $s = \sim (s - 1)$ **For** h = 0 to n - 1 $\tilde{C}_{n:}' = (s \& k) \mid ((\sim s) \& \mu)$ 18. 8. $k = \tilde{C}_{n_i}$ 19. Endfor 9. $\mu = \tilde{C}_{h}'$ 20. Endfor 10. $s = j \oplus h$ 21. Return \tilde{C}_{p} 11. $s \mid = s \gg 1$

Output: Permuted ciphertext $\tilde{C}'_p \in \mathbb{F}_2^n$ masked by a codeword.

Ciphertext permutation 00000

DPA attack 000000 Conclusion 0000

Countermeasure [PRDCF16]

Main idea

From masked ciphertext to masked permuted ciphertext:

$$\begin{split} \tilde{C}'_{p} &= \tilde{C}' \cdot \mathcal{P}^{-1} \\ &= (\tilde{C} \oplus B_{p}) \cdot \mathcal{P}^{-1} \\ &= \tilde{C} \cdot \mathcal{P}^{-1} \oplus (B \cdot \mathcal{P}) \cdot \mathcal{P}^{-1} \\ &= \tilde{C}_{p} \oplus B. \end{split}$$

From masked permuted ciphertext to the same syndrome than non-masked ciphertext:

$$S = \tilde{C}'_{p} \cdot \mathcal{H}^{T}$$

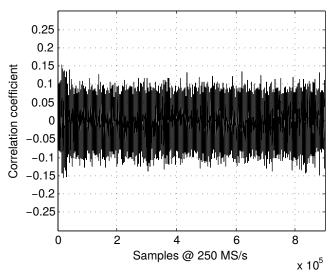
= $(\tilde{C}_{p} \oplus B) \cdot \mathcal{H}^{T}$
= $\tilde{C}_{p} \cdot \mathcal{H}^{T} \oplus \underbrace{B \cdot \mathcal{H}^{T}}_{=0}$
= $\tilde{C}_{p} \cdot \mathcal{H}^{T}$.

Ciphertext permutation

DPA attack 000000 Conclusion 0000

Countermeasure [PRDCF16]

Trace example



Ciphertext permutation 00000

DPA attack

Conclusion

Outline

Context

Ciphertext permutation

DPA attack

Conclusion

Ciphertext permutation

DPA attack 000000 Conclusion •000

Conclusion

- DPA against a 'secure' permutation algorithm (countermeasure for cache-memory attack),
- Simple masking countermeasure (with *n* more bits and not a huge amount of additional computations),
- DPA not depending on the code structure so possible for others linear codes than Goppa codes.

Ciphertext permutation 00000 DPA attack 000000 Conclusion

DPA on the 'Secure' Permutation in the McEliece PKC

Tania RICHMOND

Thank you for your attention!

Ciphertext permutation

DPA attack 000000 Conclusion

References

- DH76 : *New directions in cryptography*, W. Diffie and M. Hellman, IEEE Transactions on Information Theory 1976.
- McE78 : A public-key cryptosystem based on algebraic coding theory, R. McEliece, DSN progress report 1978.
- STMOS08 : Side Channels in the McEliece PKC, F. Strenzke, E. Tews, H. G. Molter, R. Overbeck and A. Shoufan, PQCrypto 2008.
- PRDCF16 : Differential power analysis attack on the secure bit permutation in the McEliece cryptosystem, M. Petrvalský, T. Richmond, M. Drutarovský, P.-L. Cayrel and V. Fischer, Radioelektronika 2016.

Ciphertext permutation 00000

DPA attack 000000 Conclusion

Pearson's correlation coefficient

We used for correlation analyses:

$$r_{H,X}(\eta) = \frac{\sum_{i=1}^{N} [(X_i(\eta) - \bar{X}(\eta))(H_i - \bar{H})]}{\sqrt{\sum_{i=1}^{N} [X_i(\eta) - \bar{X}(\eta)]^2 \sum_{i=1}^{N} (H_i - \bar{H})^2}}$$

where $r_{H,X}(\eta)$ is the Pearson's correlation coefficient for η -th sample (measured during execution of the cryptographic algorithm), N is a number of measured traces, $X_i(\eta)$ is a value of η -th sample measured during *i*-th measurement (*i*-th trace), $\bar{X}(\eta)$ is a mean value of corresponding η -th samples (from all traces), H_i is a hypothesis of power consumption for one bit of input data corresponding with *i*-th measurement (*i*-th trace) and \bar{H} is a mean value of all hypotheses H_i .